Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 613(7943): 391-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599985

RESUMO

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Assuntos
Proteínas de Ligação ao GTP , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Biocatálise , Domínio Catalítico , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/química , Metiltransferases/metabolismo , Fosforilação , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato
2.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400558

RESUMO

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 120(3): e2218959120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626555

RESUMO

Transcription factors (TFs) control numerous genes that are directly relevant to many human disorders. However, developing specific reagents targeting TFs within intact cells is challenging due to the presence of highly disordered regions within these proteins. Intracellular antibodies offer opportunities to probe protein function and validate therapeutic targets. Here, we describe the optimization of nanobodies specific for BCL11A, a validated target for the treatment of hemoglobin disorders. We obtained first-generation nanobodies directed to a region of BCL11A comprising zinc fingers 4 to 6 (ZF456) from a synthetic yeast surface display library, and employed error-prone mutagenesis, structural determination, and molecular modeling to enhance binding affinity. Engineered nanobodies recognized ZF6 and mediated targeted protein degradation (TPD) of BCL11A protein in erythroid cells, leading to the anticipated reactivation of fetal hemoglobin (HbF) expression. Evolved nanobodies distinguished BCL11A from its close paralog BCL11B, which shares an identical DNA-binding specificity. Given the ease of manipulation of nanobodies and their exquisite specificity, nanobody-mediated TPD of TFs should be suitable for dissecting regulatory relationships of TFs and gene targets and validating therapeutic potential of proteins of interest.


Assuntos
Anticorpos de Domínio Único , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hemoglobina Fetal/metabolismo
4.
Nat Chem Biol ; 19(12): 1540-1550, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884805

RESUMO

NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.


Assuntos
NADPH Oxidases , Neoplasias , Humanos , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Linhagem Celular
5.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33768661

RESUMO

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Assuntos
Eucariotos/química , Ressonância Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estrutura Molecular
6.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155847

RESUMO

Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas/metabolismo , Animais , Humanos , Conformação Proteica
7.
Solid State Nucl Magn Reson ; 98: 1-11, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30641444

RESUMO

In this article we give an overview over the use of DNP-enhanced solid-state NMR spectroscopy for the investigation of unfolded, disordered and misfolded proteins. We first provide an overview over studies in which DNP spectroscopy has successfully been applied for the structural investigation of well-folded amyloid fibrils formed by short peptides as well as full-length proteins. Sample cooling to cryogenic temperatures often leads to severe line broadening of resonance signals and thus a loss in resolution. However, inhomogeneous line broadening at low temperatures provides valuable information about residual dynamics and flexibility in proteins, and, in combination with appropriate selective isotope labeling techniques, inhomogeneous linewidths in disordered proteins or protein regions may be exploited for evaluation of conformational ensembles. In the last paragraph we highlight some recent studies where DNP-enhanced MAS-NMR-spectroscopy was applied to the study of disordered proteins/protein regions and inhomogeneous sample preparations.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Desdobramento de Proteína , Proteínas/química , Humanos , Estabilidade Proteica , Proteínas/metabolismo , Temperatura
8.
Biophys J ; 114(7): 1614-1623, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642031

RESUMO

Intrinsically disordered proteins dynamically sample a wide conformational space and therefore do not adopt a stable and defined three-dimensional conformation. The structural heterogeneity is related to their proper functioning in physiological processes. Knowledge of the conformational ensemble is crucial for a complete comprehension of this kind of proteins. We here present an approach that utilizes dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of sparsely isotope-labeled proteins in frozen solution to take snapshots of the complete structural ensembles by exploiting the inhomogeneously broadened line-shapes. We investigated the intrinsically disordered protein α-synuclein (α-syn), which plays a key role in the etiology of Parkinson's disease, in three different physiologically relevant states. For the free monomer in frozen solution we could see that the so-called "random coil conformation" consists of α-helical and ß-sheet-like conformations, and that secondary chemical shifts of neighboring amino acids tend to be correlated, indicative of frequent formation of secondary structure elements. Based on these results, we could estimate the number of disordered regions in fibrillar α-syn as well as in α-syn bound to membranes in different protein-to-lipid ratios. Our approach thus provides quantitative information on the propensity to sample transient secondary structures in different functional states. Molecular dynamics simulations rationalize the results.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , alfa-Sinucleína/química , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Conformação Proteica , Temperatura
9.
J Biomol NMR ; 64(1): 9-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26728075

RESUMO

A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. (1)H) and low-γ (e.g. (13)C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Membrana/química
10.
Biol Chem ; 397(12): 1335-1354, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451995

RESUMO

The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.


Assuntos
Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Humanos , Bicamadas Lipídicas/metabolismo
11.
Angew Chem Int Ed Engl ; 55(36): 10746-50, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27351143

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Óxidos N-Cíclicos/química , Marcação por Isótopo , Polietilenoglicóis/química , Propanóis/química , Estrutura Secundária de Proteína , Proteínas/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
12.
Biochemistry ; 54(8): 1628-37, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25675241

RESUMO

Thioredoxin, involved in numerous redox pathways, is maintained in the dithiol state by the nicotinamide adenine dinucleotide phosphate-dependent flavoprotein thioredoxin reductase (TrxR). Here, TrxR from Lactococcus lactis is compared with the well-characterized TrxR from Escherichia coli. The two enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s(-1)) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli TrxR. The rate of light inactivation under standardized conditions (λmax=460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass of the isoalloxazine ring, and the extracted modified cofactor reacted with dinitrophenyl hydrazine, indicating the presence of an aldehyde. We hypothesize that a methyl group of FAD is oxidized to a formyl group. The significance of this not previously reported oxidation and the exceptionally high rate of oxygen reduction are discussed in relation to other flavin modifications and the possible occurrence of enzymes with similar properties.


Assuntos
Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Luz , Tiorredoxina Dissulfeto Redutase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática/genética , Estabilidade Enzimática/efeitos da radiação , Escherichia coli/enzimologia , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Lactococcus lactis/genética , Espectrometria de Massas , Oxigênio/química , Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
13.
Nat Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030419

RESUMO

Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates. We also show that the HECT-domain ubiquitin covalent intermediate appears to eject the E2 conjugating enzyme, promoting catalytic turnover. These findings provide key mechanistic insights into how protein ubiquitination occurs and provide a framework for understanding E3 functions and regulation.

14.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511503

RESUMO

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Assuntos
Aminoácidos , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
15.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293057

RESUMO

The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α 2 γ 2 ) to adult hemoglobin (HbA: α 2 ß 2 ) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a special role in DNA binding and γ-globin gene repression. Our findings help account for some rare γ-globin gene promoter mutations that perturb BCL11A binding and lead to increased HbF in adults (hereditary persistence of fetal hemoglobin). Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and ß-thalassemia.

16.
Methods Enzymol ; 682: 289-318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36948705

RESUMO

Phosphatase and tensin homolog is a lipid phosphatase that serves as the major negative regulator of the PI3K/AKT pathway. It catalyzes the 3'-specific dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to generate PIP2. PTEN's lipid phosphatase function depends on several domains, including an N-terminal segment spanning the first 24 amino acids, which results in a catalytically impaired enzyme when mutated. Furthermore, PTEN is regulated by a cluster of phosphorylation sites located on its C-terminal tail at Ser380, Thr382, Thr383, and Ser385, which drives its conformation from an open to a closed autoinhibited but stable state. Herein, we discuss the protein chemical strategies we used to reveal the structure and mechanism of how PTEN's terminal regions govern its function.


Assuntos
PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Aminoácidos/metabolismo , Lipídeos , Fosforilação
17.
Elife ; 112022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35968932

RESUMO

Akt is a Ser/Thr protein kinase that plays a central role in metabolism and cancer. Regulation of Akt's activity involves an autoinhibitory intramolecular interaction between its pleckstrin homology (PH) domain and its kinase domain that can be relieved by C-tail phosphorylation. PH domain mutant E17K Akt is a well-established oncogene. Previously, we reported that the conformation of autoinhibited Akt may be shifted by small molecule allosteric inhibitors limiting the mechanistic insights from existing X-ray structures that have relied on such compounds (Chu et al., 2020). Here, we discover unexpectedly that a single mutation R86A Akt exhibits intensified autoinhibitory features with enhanced PH domain-kinase domain affinity. Structural and biochemical analysis uncovers the importance of a key interaction network involving Arg86, Glu17, and Tyr18 that controls Akt conformation and activity. Our studies also shed light on the molecular basis for E17K Akt activation as an oncogenic driver.


Assuntos
Domínios de Homologia à Plecstrina , Proteínas Proto-Oncogênicas c-akt , Oncogenes , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
18.
Chem Commun (Camb) ; 58(68): 9512-9515, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35920752

RESUMO

Intrinsically disordered regions (IDRs) of proteins are critical in the regulation of biological processes but difficult to study structurally. Nuclear magnetic resonance (NMR) is uniquely equipped to provide structural information on IDRs at atomic resolution; however, existing NMR methods often pose a challenge for large molecular weight IDRs. Resonance assignment of IDRs using 15ND-detection was previously demonstrated and shown to overcome some of these limitations. Here, we improve the methodology by overcoming the need for deuterated buffers and provide better sensitivity and resolution at higher magnetic fields and physiological salt concentrations using transverse relaxation optimized spectroscopy (TROSY). Finally, large disordered regions with low sequence complexity can be assigned efficiently using these new methods as demonstrated by achieving near complete assignment of the 398-residue N-terminal IDR of the transcription factor NFAT1 harboring 18% prolines.


Assuntos
Proteínas Intrinsicamente Desordenadas , Imãs , Proteínas Intrinsicamente Desordenadas/química , Campos Magnéticos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Fatores de Transcrição
19.
Cell Rep ; 36(1): 109333, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233191

RESUMO

While misfolding of alpha-synuclein (αSyn) is central to the pathogenesis of Parkinson's disease (PD), fundamental questions about its structure and function at the synapse remain unanswered. We examine synaptosomes from non-transgenic and transgenic mice expressing wild-type human αSyn, the E46K fPD-causing mutation, or an amplified form of E46K ("3K"). Synaptosomes from mice expressing the 3K mutant show reduced Ca2+-dependent vesicle exocytosis, altered synaptic vesicle ultrastructure, decreased SNARE complexes, and abnormal levels of certain synaptic proteins. With our intra-synaptosomal nuclear magnetic resonance (NMR) method, we reveal that WT αSyn participates in heterogeneous interactions with synaptic components dependent on endogenous αSyn and synaptosomal integrity. The 3K mutation markedly alters these interactions. The synaptic microenvironment is necessary for αSyn to reach its native conformations and establish a physiological interaction network. Its inability to populate diverse conformational ensembles likely represents an early step in αSyn dysfunction that contributes to the synaptotoxicity observed in synucleinopathies.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Vesículas Sinápticas/patologia , Sinaptossomos/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Exocitose , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Proteínas SNARE/metabolismo , Solubilidade , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/ultraestrutura
20.
Nat Struct Mol Biol ; 28(10): 858-868, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625746

RESUMO

Phosphatase and tensin homolog (PTEN) is a phosphatidylinositol-3,4,5-triphosphate (PIP3) phospholipid phosphatase that is commonly mutated or silenced in cancer. PTEN's catalytic activity, cellular membrane localization and stability are orchestrated by a cluster of C-terminal phosphorylation (phospho-C-tail) events on Ser380, Thr382, Thr383 and Ser385, but the molecular details of this multi-faceted regulation have remained uncertain. Here we use a combination of protein semisynthesis, biochemical analysis, NMR, X-ray crystallography and computational simulations on human PTEN and its sea squirt homolog, VSP, to obtain a detailed picture of how the phospho-C-tail forms a belt around the C2 and phosphatase domains of PTEN. We also visualize a previously proposed dynamic N-terminal α-helix and show that it is key for PTEN catalysis but disordered upon phospho-C-tail interaction. This structural model provides a comprehensive framework for how C-tail phosphorylation can impact PTEN's cellular functions.


Assuntos
PTEN Fosfo-Hidrolase/química , Animais , Ciona intestinalis/química , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA