Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 208(2): 271-4, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23599311

RESUMO

HIV-1 dual infection (DI) and CXCR4 (X4) coreceptor usage are associated with accelerated disease progression but frequency and dynamics of coreceptor usage during DI is unknown. Ultradeep sequencing was used to interrogate for DI and infer coreceptor usage in longitudinal blood samples of 102 subjects. At baseline, X4 usage was high (23 subjects harbored X4 variants) and was not associated with infection duration or DI. Coreceptor usage changed over time in 12 of 47 participants, and X4 usage emerged in 4 of 41 monoinfections vs 2 of 5 superinfections (P = .12), suggesting a weak statistical trend toward occurrence of superinfection and acquiring X4 usage.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Adulto , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Masculino , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Análise de Sequência de DNA/métodos
2.
Arch Pathol Lab Med ; 146(7): 862-871, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619755

RESUMO

CONTEXT.­: Minimal residual disease (MRD) is a major prognostic factor in multiple myeloma, although validated technologies are limited. OBJECTIVE.­: To standardize the performance of the LymphoTrack next-generation sequencing (NGS) assays (Invivoscribe), targeting clonal immunoglobulin rearrangements, in order to reproduce the detection of tumor clonotypes and MRD quantitation in myeloma. DESIGN.­: The quantification ability of the assay was evaluated through serial dilution experiments. Paired samples from 101 patients were tested by LymphoTrack, using Sanger sequencing and EuroFlow's next-generation flow (NGF) assay as validated references for diagnostic and follow-up evaluation, respectively. MRD studies using LymphoTrack were performed in parallel at 2 laboratories to evaluate reproducibility. RESULTS.­: Sensitivity was set as 1.3 tumor cells per total number of input cells. Clonality was confirmed in 99% and 100% of cases with Sanger and NGS, respectively, showing great concordance (97.9%), although several samples had minor discordances in the nucleotide sequence of rearrangements. Parallel NGS was performed in 82 follow-up cases, achieving a median sensitivity of 0.001%, while for NGF, median sensitivity was 0.0002%. Reproducibility of LymphoTrack-based MRD studies (85.4%) and correlation with NGF (R2 > 0.800) were high. Bland-Altman tests showed highly significant levels of agreement between flow and sequencing. CONCLUSIONS.­: Taken together, we have shown that LymphoTrack is a suitable strategy for clonality detection and MRD evaluation, with results comparable to gold standard procedures.


Assuntos
Mieloma Múltiplo , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Reprodutibilidade dos Testes
3.
Nat Commun ; 11(1): 1780, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286267

RESUMO

A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P. falciparum, the mode of action of IZPs remains unknown. To investigate, we here combine in vitro evolution and genome analysis in Saccharomyces cerevisiae with molecular, metabolomic, and chemogenomic methods in P. falciparum. Our findings reveal that IZP-resistant S. cerevisiae clones carry mutations in genes involved in Endoplasmic Reticulum (ER)-based lipid homeostasis and autophagy. In Plasmodium, IZPs inhibit protein trafficking, block the establishment of new permeation pathways, and cause ER expansion. Our data highlight a mechanism for blocking parasite development that is distinct from those of standard compounds used to treat malaria, and demonstrate the potential of IZPs for studying ER-dependent protein processing.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Concentração Inibidora 50 , Espectrometria de Massas , Proteínas de Protozoários/metabolismo , Pirazóis/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Via Secretória/efeitos dos fármacos
4.
J Cheminform ; 10(1): 6, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29464421

RESUMO

Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially effective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structurally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target.

5.
J Med Chem ; 60(15): 6721-6732, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28696697

RESUMO

Naturally derived chemical compounds are the foundation of much of our pharmacopeia, especially in antiproliferative and anti-infective drug classes. Here, we report that a naturally derived molecule called carmaphycin B is a potent inhibitor against both the asexual and sexual blood stages of malaria infection. Using a combination of in silico molecular docking and in vitro directed evolution in a well-characterized drug-sensitive yeast model, we determined that these compounds target the ß5 subunit of the proteasome. These studies were validated using in vitro inhibition assays with proteasomes isolated from Plasmodium falciparum. As carmaphycin B is toxic to mammalian cells, we synthesized a series of chemical analogs that reduce host cell toxicity while maintaining blood-stage and gametocytocidal antimalarial activity and proteasome inhibition. This study describes a promising new class of antimalarial compound based on the carmaphycin B scaffold, as well as several chemical structural features that serve to enhance antimalarial specificity.


Assuntos
Antimaláricos/farmacologia , Dipeptídeos/farmacologia , Oligopeptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Antimaláricos/síntese química , Artemisininas/farmacologia , Dipeptídeos/síntese química , Desenho de Fármacos , Ensaios Enzimáticos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Oligopeptídeos/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Saccharomyces cerevisiae/efeitos dos fármacos
6.
ACS Chem Biol ; 12(2): 422-434, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27977118

RESUMO

Recent advances in cell-based, high-throughput phenotypic screening have identified new chemical compounds that are active against eukaryotic pathogens. A challenge to their future development lies in identifying these compounds' molecular targets and binding modes. In particular, subsequent structure-based chemical optimization and target-based screening require a detailed understanding of the binding event. Here, we use directed evolution and whole-genome sequencing of a drug-sensitive S. cerevisiae strain to identify the yeast ortholog of TcCyp51, lanosterol-14-alpha-demethylase (TcCyp51), as the target of MMV001239, a benzamide compound with activity against Trypanosoma cruzi, the etiological agent of Chagas disease. We show that parasites treated with MMV0001239 phenocopy parasites treated with another TcCyp51 inhibitor, posaconazole, accumulating both lanosterol and eburicol. Direct drug-protein binding of MMV0001239 was confirmed through spectrophotometric binding assays and X-ray crystallography, revealing a binding site shared with other antitrypanosomal compounds that target Cyp51. These studies provide a new probe chemotype for TcCyp51 inhibition.


Assuntos
Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Evolução Molecular Direcionada , Tripanossomicidas/uso terapêutico , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Sequência de Aminoácidos , Doença de Chagas/parasitologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Cromatografia Gasosa-Espectrometria de Massas , Simulação de Acoplamento Molecular , Plasmodium falciparum/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Espectrofotometria Ultravioleta , Esterol 14-Desmetilase/efeitos dos fármacos , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
7.
Phytochemistry ; 122: 113-118, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26632528

RESUMO

Bioassay-guided fractionation of two marine cyanobacterial extracts using the H-460 human lung cancer cell line and the OVC-5 human ovarian cancer cell line led to the isolation of three related α-methoxy-ß, ß'-dimethyl-γ-pyrones each containing a modified alkyl chain, one of which was identified as the previously reported kalkipyrone and designated kalkipyrone A. The second compound was an analog designated kalkipyrone B. The third was identified as the recently reported yoshinone A, also isolated from a marine cyanobacterium. Kalkipyrone A and B were obtained from a field-collection of the cyanobacterium Leptolyngbya sp. from Fagasa Bay, American Samoa, while yoshinone A was isolated from a field-collection of cyanobacteria (cf. Schizothrix sp.) from Panama. One-dimensional and two-dimensional NMR experiments were used to determine the overall structures and relative configurations of the kalkipyrones, and the absolute configuration of kalkipyrone B was determined by (1)H NMR analysis of diastereomeric Mosher's esters. Kalkipyrone A showed good cytotoxicity to H-460 human lung cancer cells (EC50=0.9µM), while kalkipyrone B and yoshinone A were less active (EC50=9.0µM and >10µM, respectively). Both kalkipyrone A and B showed moderate toxicity to Saccharomyces cerevisiae ABC16-Monster strain (IC50=14.6 and 13.4µM, respectively), whereas yoshinone A was of low toxicity to this yeast strain (IC50=63.8µM).


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Cianobactérias/química , Pironas/isolamento & purificação , Pironas/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Biologia Marinha , Estrutura Molecular , Panamá , Pironas/química
8.
Sci Rep ; 6: 27806, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291296

RESUMO

The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity.


Assuntos
Antimaláricos/metabolismo , Indóis/metabolismo , ATPases do Tipo-P/metabolismo , Compostos de Espiro/metabolismo , Sequência de Aminoácidos , Antimaláricos/química , Antimaláricos/farmacologia , Sítios de Ligação , Sistemas CRISPR-Cas/genética , Citosol/química , Citosol/efeitos dos fármacos , Farmacorresistência Fúngica , Indóis/química , Indóis/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , ATPases do Tipo-P/antagonistas & inibidores , ATPases do Tipo-P/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA