Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G420-G427, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126221

RESUMO

It has previously been shown that current smoking is protective against endoscopic retrograde cholangiopancreatography (ERCP)-induced acute pancreatitis, but the mechanism of this effect was not identified. We tested the hypothesis that nicotine is the active factor in this protection in a mouse model of ERCP. Pretreatment with nicotine dose dependently inhibited acute pancreatitis caused by infusion of ERCP contrast solution into the main pancreatic duct in mice. 3-2,4-Dimethoxybenzylidene anabaseine (GTS-21), a specific partial agonist of the α7 nicotinic cholinergic receptor (α7nAChR), also protected the pancreas against ERCP-induced acute pancreatitis. The effects of GTS-21 were abolished by pretreatment with the nicotinic receptor antagonist mecamylamine. Surgical splenectomy performed 7 days before ERCP-induced pancreatitis blocked the protective effects of GTS-21. Intravenous injection of a crude preparation of total splenocytes prepared from mice pretreated with GTS-21 inhibited ERCP-induced pancreatitis; splenocytes from mice treated with vehicle had no effect. When T cells were removed from the crude GTS-21-treated splenocyte preparation by immunomagnetic separation, the remaining non-T-cell splenocytes did not protect against ERCP-induced acute pancreatitis. We conclude that nicotine protects against ERCP-induced acute pancreatitis and that splenic T cells are required for this effect. Stimulation of α7 nicotinic cholinergic receptors may protect against ERCP-induced acute pancreatitis and may also be a novel approach to therapeutic reversal of ongoing acute pancreatitis.NEW & NOTEWORTHY Epidemiological evidence indicated that acute smoking reduced the risk of endoscopic retrograde cholangiopancreatography (ERCP)-induced pancreatitis, but the mechanism has remained elusive. The current findings indicate the nicotine reduces the severity of ERCP-induced pancreatitis by stimulating a population of splenic T cells that exert a protective effect on the pancreas. These findings raise the possibility that nicotinic agonists might be useful in treating pancreatitis.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Pancreatite , Camundongos , Animais , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Pancreatite/etiologia , Nicotina , Mecamilamina , Agonistas Nicotínicos/farmacologia , Doença Aguda , Receptor Nicotínico de Acetilcolina alfa7 , Baço , Linfócitos T
2.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G561-G570, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293263

RESUMO

Proper mitochondrial function and adequate cellular ATP are necessary for normal pancreatic protein synthesis and sorting, maintenance of intracellular organelles and enzyme secretion. Inorganic phosphate is required for generating ATP and its limited availability may lead to reduced ATP production causing impaired Ca2+ handling, defective autophagy, zymogen activation, and necrosis, which are all features of acute pancreatitis. We hypothesized that reduced dietary phosphate leads to hypophosphatemia and exacerbates pancreatitis severity of multiple causes. We observed that mice fed a low-phosphate diet before the induction of pancreatitis by either repeated caerulein administration or pancreatic duct injection as a model of pressure-induced pancreatitis developed hypophosphatemia and exhibited more severe pancreatitis than normophosphatemic mice. Pancreatitis severity was significantly reduced in mice treated with phosphate. In vitro modeling of secretagogue- and pressure-induced pancreatic injury was evaluated in isolated pancreatic acini using cholecystokinin and the mechanoreceptor Piezo1 agonist, Yoda1, under low and normal phosphate conditions. Isolated pancreatic acini were more sensitive to cholecystokinin- and Yoda1-induced acinar cell damage and mitochondrial dysfunction under low-phosphate conditions and improved following phosphate supplementation. Importantly, even mice on a normal phosphate diet exhibited less severe pancreatitis when treated with supplemental phosphate. Thus, hypophosphatemia sensitizes animals to pancreatitis and phosphate supplementation reduces pancreatitis severity. These appear to be direct effects of phosphate on acinar cells through restoration of mitochondrial function. We propose that phosphate administration may be useful in the treatment of acute pancreatitis.NEW & NOTEWORTHY Impaired ATP synthesis disrupts acinar cell homeostasis and is an early step in pancreatitis. We report that reduced phosphate availability impairs mitochondrial function and worsens pancreatic injury. Phosphate supplementation improves mitochondrial function and protects against experimental pancreatitis, raising the possibility that phosphate supplementation may be useful in treating pancreatitis.


Assuntos
Hipofosfatemia , Pancreatite , Doença Aguda , Trifosfato de Adenosina/metabolismo , Animais , Ceruletídeo/farmacologia , Colecistocinina/metabolismo , Hipofosfatemia/metabolismo , Canais Iônicos/metabolismo , Camundongos , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Fosfatos/metabolismo
3.
Gastroenterology ; 161(3): 982-995.e2, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051238

RESUMO

BACKGROUND & AIMS: Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. METHODS: Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. RESULTS: LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. CONCLUSIONS: Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.


Assuntos
Metabolismo Energético , Hipofosfatemia/complicações , Mitocôndrias/metabolismo , Pâncreas/metabolismo , Pancreatite Alcoólica/metabolismo , Fosfatos/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Etanol , Hipofosfatemia/metabolismo , Hipofosfatemia/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Pâncreas/patologia , Pancreatite Alcoólica/induzido quimicamente , Pancreatite Alcoólica/patologia , Pancreatite Alcoólica/prevenção & controle , Fosfatos/administração & dosagem , Índice de Gravidade de Doença , Técnicas de Cultura de Tecidos
4.
Eur J Clin Invest ; 45(3): 237-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641074

RESUMO

BACKGROUND: Regular gall bladder contraction reduces bile stasis and prevents gallstone formation. Intraduodenal administration of exogenous pancreatic secretory trypsin inhibitor-I (PSTI-I, also known as monitor peptide) causes cholecystokinin (CCK) secretion. DESIGN: We proposed that stimulation of CCK release by PSTI would produce gall bladder contraction and prevent gallstones in mice fed a lithogenic diet. Therefore, we tested the effect of overexpression of rat PSTI-I in pancreatic acinar cells on plasma CCK levels and gall bladder function in a transgenic mouse line (TgN[Psti1]; known hereafter as PSTI-I tg). RESULTS: Importantly, PSTI tg mice had elevated fasting and fed plasma CCK levels compared to wild-type (WT) mice. Only mice fed the lithogenic diet developed gallstones. Both fasting and stimulated plasma CCK levels were substantially reduced in both WT and PSTI-I tg mice on the lithogenic diet. Moreover, despite higher CCK levels PSTI-I tg animals developed more gallstones than WT animals. CONCLUSIONS: Together with the previously observed decrease in CCK-stimulated gall bladder emptying in mice fed a lithogenic diet, our findings suggest that a lithogenic diet causes gallstone formation by impaired CCK secretion in addition to reduced gall bladder sensitivity to CCK.


Assuntos
Colecistocinina/metabolismo , Cálculos Biliares/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Acinares/metabolismo , Animais , Colecistite/patologia , Dieta , Vesícula Biliar/patologia , Esvaziamento da Vesícula Biliar/fisiologia , Cálculos Biliares/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/fisiologia , Pâncreas/citologia , Ratos , Inibidor da Tripsina Pancreática de Kazal
5.
FASEB J ; 28(2): 891-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24221085

RESUMO

Alcohol abuse is a major cause of pancreatitis in people, but the mechanism is unknown. It has been recently demonstrated that transient receptor potential vanilloid 1 (TRPV1) activation causes neurogenic inflammation and plays an important role in acute pancreatitis. Moreover, TRPV1 is activated by ethanol. We examined the direct effects of ethanol on acute pancreatitis. Acute inflammation of the pancreas was produced by injection of ethanol and palmitoleic acid (POA), a nonoxidative metabolite of ethanol, in wild-type C57BL/6J mice and Trpv1-knockout C57BL/6J mice. Inflammatory indexes were analyzed 24 h later. Injection of ethanol + POA produced acute pancreatitis indicated by significant increases in histopathological damage, serum amylase levels, and pancreatic MPO concentrations (P<0.05-0.001). All parameters of pancreatitis were blocked by pretreatment with the TRPV1 antagonist drug AMG9810. In addition, ethanol + POA administration to Trpv1knockout mice did not produce pancreatic inflammation. Treatment with vehicle, ethanol alone, or POA alone had no inflammatory effects. TRPV1 partially mediates inflammation induced by ethanol + POA in the mouse pancreas, consistent with the ability of ethanol to activate TRPV1. We propose that ethanol may contribute to alcohol-induced pancreatitis by a neurogenic mechanism.


Assuntos
Acrilamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Etanol/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pancreatite/patologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
6.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451372

RESUMO

Pancreatic fibrosis is a complication of chronic pancreatitis and is a prominent feature of pancreatic cancer. Pancreatic fibrosis is commonly observed in patients with prolonged pancreatic duct obstruction, which elevates intrapancreatic pressure. We show here that increased pancreatic duct pressure causes fibrosis and describes the mechanism by which pressure increases deposition of extracellular matrix proteins and fibrosis. We found that pancreatic stellate cells (PSCs), the source of the extracellular matrix proteins in fibrosis, express the mechanically activated ion channel Piezo1. By increasing intracellular calcium, mechanical stress or the Piezo1 agonist Yoda1-activated PSCs manifest by loss of perinuclear fat droplets and increased TGF-ß1, fibronectin, and type I collagen expression. These effects were blocked by the Piezo1 inhibitor GsMTx4 and absent in PSCs from mice with conditional genetic deletion of Piezo1 in stellate cells, as was pancreatic duct ligation-induced fibrosis. Although TRPV4 has been proposed to have direct mechanosensing properties, we discovered that PSCs from Trpv4-KO mice were protected against Yoda1-triggered activation. Moreover, mice devoid of TRPV4 were protected from pancreatic duct ligation-induced fibrosis. Thus, high pressure within the pancreas stimulates Piezo1 channel opening, and subsequent activation of TRPV4 leads to stellate cell activation and pressure-induced chronic pancreatitis and fibrosis.


Assuntos
Canais Iônicos , Pancreatite Crônica , Canais de Cátion TRPV , Animais , Fibrose , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Pâncreas/patologia , Células Estreladas do Pâncreas , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Canais de Cátion TRPV/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G528-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21183662

RESUMO

Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.


Assuntos
Aminoácidos/metabolismo , Colecistocinina/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Aminoácidos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Colecistocinina/genética , Eletrofisiologia , Citometria de Fluxo , Imuno-Histoquímica , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Potássio/metabolismo , Receptores de Detecção de Cálcio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Physiol Gastrointest Liver Physiol ; 298(4): G518-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110462

RESUMO

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibitor known as SPINK3, and the rat has two trypsin inhibitors commonly known as pancreatic secretory trypsin inhibitors I and II (PSTI-I and -II). Rat PSTI-I is a 61-amino acid protein that shares 65% sequence identity with mouse SPINK3. It was recently demonstrated that mice with genetic deletion of the Spink3 gene (Spink3(-/-)) do not survive beyond 15 days and lack normal pancreata because of pancreatic autophagy. We have shown that targeted transgenic expression of the rat Psti1 gene to acinar cells in mice [TgN(Psti1)] protects mice against caerulein-induced pancreatitis. To determine whether the autophagic phenotype and lethality in Spink3(-/-) mice were due to lack of pancreatic trypsin inhibitor, we conducted breeding studies with Spink3(+/-) heterozygous mice and TgN(Psti1) mice. We observed that, whereas Spink3(+/+), Spink3(+/-), and Spink3(-/-)/TgN(Psti1) mice had similar survival rates, no Spink3(-/-) mice survived longer than 1 wk. The level of expression of SPINK3 protein in acini was reduced in heterozygote mice compared with wild-type mice. Furthermore, endogenous trypsin inhibitor capacity was reduced in the pancreas of heterozygote mice compared with wild-type or knockout mice rescued with the rat Psti1 gene. Surprisingly, the lesser amount of SPINK3 present in the pancreata of heterozygote mice did not predispose animals to increased susceptibility to caerulein-induced acute pancreatitis. We propose that a threshold level of expression is sufficient to protect against pancreatitis.


Assuntos
Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pâncreas/patologia , Pancreatite/genética , Proteínas Secretadas pela Próstata/genética , Transgenes/genética , Sequência de Aminoácidos , Amilases/sangue , Animais , Tamanho Corporal/genética , Ceruletídeo/farmacologia , Feminino , Glicoproteínas/metabolismo , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Tamanho do Órgão/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas Exócrino/patologia , Pâncreas Exócrino/ultraestrutura , Pancreatite/induzido quimicamente , Pancreatite/patologia , Proteínas Secretadas pela Próstata/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Taxa de Sobrevida , Tripsina/metabolismo , Inibidor da Tripsina Pancreática de Kazal
9.
Cell Tissue Res ; 341(2): 289-97, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20582553

RESUMO

Cholecystokinin (CCK) is secreted by neuroendocrine cells comprising 0.1%-0.5% of the mucosal cells in the upper small intestine. Using CCK promoter-driven green fluorescent protein (GFP) expression in transgenic mice, we have applied immunofluorescence techniques to analyze the morphology of CCK cells. GFP and CCK colocalize in neuroendocrine cells with little aberrant GFP expression. CCK-containing cells are either flask- or spindle-shaped, and in some cells, we have found dendritic processes similar to pseudopods demonstrated for gut somatostatin-containing D cells. Most pseudopods are short, the longest process visualized extending across three cells. Pseudopods usually extend to adjacent cells but some weave between neighboring cells. Dual processes have also been observed. Three-dimensional reconstructions suggest that processes are not unidirectional and thus are unlikely to be involved in migration of CCK cells from the crypt up the villus. Abundant CCK immunostaining is present in the pseudopods, suggesting that they release CCK onto the target cell. In order to identify the type of cells being targeted, we have co-stained sections with antibodies to chromogranin A, trefoil factor-3, and sucrase-isomaltase. CCK cell processes almost exclusively extend to sucrase-isomaltase-positive enterocytes. Thus, CCK cells have cellular processes possibly involved in paracrine secretion.


Assuntos
Colecistocinina/análise , Intestino Delgado/citologia , Células Neuroendócrinas/citologia , Pseudópodes/ultraestrutura , Animais , Colecistocinina/imunologia , Cromogranina A/imunologia , Imunofluorescência , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos , Mucinas/imunologia , Células Neuroendócrinas/química , Comunicação Parácrina/imunologia , Pseudópodes/química , Somatostatina/metabolismo , Células Secretoras de Somatostatina/química , Células Secretoras de Somatostatina/citologia , Complexo Sacarase-Isomaltase/imunologia , Fator Trefoil-3
10.
J Clin Invest ; 130(5): 2527-2541, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999644

RESUMO

Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.


Assuntos
Canais Iônicos/agonistas , Pancreatite/etiologia , Pancreatite/fisiopatologia , Canais de Cátion TRPV/fisiologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Modelos Animais de Doenças , Feminino , Canais Iônicos/genética , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/fisiopatologia , Pancreatite/patologia , Pressão , Pirazinas/farmacologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Tiadiazóis/farmacologia
11.
Nat Commun ; 9(1): 1715, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712913

RESUMO

Merely touching the pancreas can lead to premature zymogen activation and pancreatitis but the mechanism is not completely understood. Here we demonstrate that pancreatic acinar cells express the mechanoreceptor Piezo1 and application of pressure within the gland produces pancreatitis. To determine if this effect is through Piezo1 activation, we induce pancreatitis by intrapancreatic duct instillation of the Piezo1 agonist Yoda1. Pancreatitis induced by pressure within the gland is prevented by a Piezo1 antagonist. In pancreatic acinar cells, Yoda1 stimulates calcium influx and induces calcium-dependent pancreatic injury. Finally, selective acinar cell-specific genetic deletion of Piezo1 protects mice against pressure-induced pancreatitis. Thus, activation of Piezo1 in pancreatic acinar cells is a mechanism for pancreatitis and may explain why pancreatitis develops following pressure on the gland as in abdominal trauma, pancreatic duct obstruction, pancreatography, or pancreatic surgery. Piezo1 blockade may prevent pancreatitis when manipulation of the gland is anticipated.


Assuntos
Células Acinares/efeitos dos fármacos , Cálcio/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pancreatite/prevenção & controle , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Pressão Hidrostática/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/etiologia , Pancreatite/genética , Pancreatite/patologia , Peptídeos/farmacologia , Cultura Primária de Células , Bibliotecas de Moléculas Pequenas/farmacologia , Venenos de Aranha/farmacologia
12.
Gastroenterol Res Pract ; 2017: 8438172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484490

RESUMO

Clostridium difficile toxin A is a colonic inflammatory agent that acts partially by activation of TRPV1 (transient receptor potential vanilloid type 1). Resiniferatoxin (RTX) is an excitotoxin that activates TRPV1 at low concentrations and defunctionalizes TRPV1 at high concentrations. RTX at various doses was injected intraluminally into isolated ileal segments in anesthetized rats. After 3 hours, the treated segments were removed and inflammation was assessed. This acute treatment with RTX resulted in biphasic responses: (1) an increase in inflammation similar to that caused by toxin A and capsaicin at low doses of up to 100 ng RTX and (2) no inflammatory effect of RTX at higher doses (1-100 µg), consistent with a defunctionalizing or neurotoxic effect of RTX at high doses. Separately, anesthetized rats were treated with RTX enemas and one or four weeks later were challenged with toxin A. Toxin A-induced colitis was significantly inhibited one week after an RTX enema, and this effect was RTX dose dependent. When tested four weeks after administration of the RTX enema, protection against toxin A colitis was lost. In conclusion, an RTX enema protects against toxin A-induced colitis in rats for at least one week but less than four weeks.

13.
Int J Inflam ; 2016: 4705065, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881175

RESUMO

Nicotine is protective in ulcerative colitis but not Crohn's disease of the small intestine, but little is known about the effects of nicotine on Clostridium difficile toxin A-induced enteritis. Isolated ileal or colonic segments in anesthetized rats were pretreated with nicotine bitartrate or other pharmacological agents before intraluminal injection of toxin A. After 3 hours, the treated segments were removed and inflammation was assessed. Nicotine biphasically inhibited toxin A colitis but not ileitis. Pretreatment with the nicotinic receptor antagonist, hexamethonium, blocked the effects of nicotine. Pretreating the colonic segments with hexamethonium before toxin A administration resulted in more inflammation than seen with toxin A alone, suggesting that a tonic nicotinic anti-inflammatory condition exists in the colon. Nicotine also inhibited toxin A-induced increased colonic concentrations of the TRPV1 (transient receptor potential vanilloid subtype 1) agonist, leukotriene B4 (LTB4), and release of the proinflammatory neuropeptide, substance P. Pretreatment with nicotine did not protect against direct TRPV1-mediated colitis caused by intraluminal capsaicin. Nicotinic cholinergic receptors tonically protect the colon against inflammation and nicotine inhibits toxin A colitis but not toxin A ileitis in rats in part by inhibition of toxin A-induced activation of TRPV1 by endogenous TRPV1 agonists such as LTB4.

15.
Cell Mol Gastroenterol Hepatol ; 1(1): 75-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25729765

RESUMO

BACKGROUND & AIMS: In the pancreas, activation of primary sensory nerves through the transient receptor potential ion channel TRPV1 contributes to the early stages of development of pancreatitis. Little is known about the mechanism by which this occurs. We investigated whether leukotriene B4 (LTB4) is an endogenous agonist of TRPV1 and mediates pancreatitis. METHODS: Acute inflammation was induced in the pancreata of Trpv1-/- mice and their wild-type littermates by retrograde infusion of the main pancreatic duct with 2% sodium taurocholate (NaT) or intraperitoneal injections of caerulein. Mice were also given injections of resiniferatoxin (an excitotoxin that desensitizes TRPV1) or MK886 (a drug that inhibits LTB4 biosynthesis). Pancreatic tissues and plasma were collected and analyzed. RESULTS: Retrograde perfusion of the main pancreatic ducts of wild-type mice with NaT caused severe acute pancreatitis; severity was reduced by co-administration of resiniferatoxin. Trpv1-/- mice developed a less severe pancreatitis following NaT administration than controls. Administration of MK886 before perfusion with NaT also significantly reduced the severity of pancreatitis in wild-type mice. Pancreatic tissues from mice given NaT had a marked increase in the level of 5-lipoxygenase immunoreactivity specifically in acinar cells. Bile acid and caerulein induced secretion of LTB4 by cultured pancreatic acinar cells; MK886 inhibited this process. CONCLUSIONS: Administration of caerulein or intraductal bile acids in mice causes production of LTB4 by pancreatic acinar cells. This activates TRPV1 on primary sensory nerves to induce acute pancreatitis.

16.
Neuropeptides ; 37(1): 30-5, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12637033

RESUMO

Neurokinin A (NKA) has previously been shown to be a full agonist of the neurokinin-1 receptor (NK-1R) but is only able to cause partial homologous desensitization of the receptor compared to substance P (SP). NKA and SP share the same amino acid sequence at their C-terminal active site domains but differ in structure at their N-terminal domains. These observations have led to the proposal that the N-terminal domains of tachykinin peptides affect the desensitization but not the agonist activities of the peptides. Some of the preprotachykinin proteins contain SP and the NKA-like tachykinins neuropeptide K (NPK) and neuropeptide gamma (NPgamma), which contain NKA at their C-terminals and are N-terminally extended. In this study, the abilities of NKA, NPK, and NPgamma to stimulate NK-1R second messenger (IP(3)) signaling and rapid homologous desensitization of the NK-1R were examined. In addition, a similar analysis was performed using several nonmammalian tachykinin peptides in order to obtain additional insight into the role of the tachykinin N-terminal domain in these NK-1R functions. NPK and NPgamma were found, like NKA, to be full agonists of rat NK-1R IP(3) signaling but, unlike NKA, were also able to cause full rapid homologous desensitization of the receptor. The extended N-terminal domains of NPK and NPgamma thus increase the desensitization activities of these NKA-like peptides. Of the nonmammalian tachykinins tested, all were full agonists but kassinin and eledoisin had only partial homologous desensitization activity, suggesting that the N-terminal structures of these peptides also differentially affect agonist versus desensitization activities of the NK-1R.


Assuntos
Receptores da Neurocinina-1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taquicininas/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , DNA Complementar/genética , Relação Dose-Resposta a Droga , Inosina Trifosfato/metabolismo , Camundongos , Dados de Sequência Molecular , Antagonistas dos Receptores de Neurocinina-1 , Ratos , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transfecção
17.
Int J Inflam ; 2014: 389621, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045574

RESUMO

We tested the hypothesis that 5-aminosalicylic acid (5-ASA) inhibits toxin A-induced generation of colonic leukotriene B4 (LTB4) and toxin A colitis in rats. Isolated colonic segments in anesthetized rats were treated intraluminally with toxin A for 3 hours with or without 30 minutes of pretreatment with either 5-ASA or sulfapyridine and then colonic tissue levels of LTB4 were measured and inflammation was assessed. Separately, sulfasalazine was administered to rats in their drinking water for 5 days, isolated colonic segments were then prepared, toxin A was administered, and inflammation was assessed as before. Pretreatment with 5-ASA inhibited toxin A-induced increased tissue LTB4 concentration in the colon. Sulfasalazine and 5-ASA but not sulfapyridine significantly inhibited toxin A colitis. However, pretreatment with 5-ASA did not protect against direct TRPV1-mediated colitis caused by capsaicin. Toxin A stimulated the release of substance P (SP), and this effect was also inhibited by sulfasalazine and 5-ASA but not by sulfapyridine. Thus, toxin A stimulates colonic LTB4 resulting in activation of TRPV1, release of SP, and colitis. Inhibition of 5-LO by 5-ASA disrupts this pathway and supports the concept that LTB4 activation of TRPV1 plays a role in toxin A colitis.

18.
J Clin Invest ; 123(8): 3343-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863714

RESUMO

Cholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild-type mice but not Ildr1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation was associated with increased [Ca2+]i, consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion.


Assuntos
Colecistocinina/metabolismo , Receptores de Superfície Celular/fisiologia , Animais , Células CHO , Sinalização do Cálcio , Colecistocinina/sangue , Cricetinae , Células Enteroendócrinas/metabolismo , Ácidos Graxos/fisiologia , Expressão Gênica , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Lipoproteínas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Pancreas ; 40(5): 708-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602738

RESUMO

OBJECTIVES: We tested the hypothesis that leukotriene B4 (LTB4) mediates pancreatic inflammation in rats via activation of the transient receptor potential vanilloid 1 (TRPV1). METHODS: Leukotriene B4 or a vehicle was administered to adult rats via celiac axis injection after pretreatment with the TRPV1 antagonist, capsazepine, or vehicle, and the severity of subsequent pancreatitis was assessed by measuring pancreatic edema, myeloperoxidase (MPO) activity, and histological grading. In a second experiment, acute pancreatitis was induced by common pancreaticobiliary duct ligation. Six hours after surgery, pancreatic tissue levels of LTB4 were determined by enzyme-linked immunosorbent assay. Also, the effects of inhibition of LTB4 biosynthesis by pretreatment with the 5-lipoxygenase-activating peptide inhibitor, MK-886, were determined. RESULTS: Celiac axis administration of LTB4 significantly increased pancreatic edema and MPO activity, and produced histological evidence of pancreatic edema, neutrophil infiltration, and necrosis. Capsazepine pretreatment significantly reduced all inflammatory parameters in LTB4-induced pancreatitis. Pancreatic tissue levels of LTB4 were significantly elevated in rats that underwent common pancreaticobiliary duct ligation compared with control rats. MK-886 pretreatment significantly inhibited pancreatic edema, histological damage, and pancreatic MPO concentrations. CONCLUSIONS: Common pancreaticobiliary duct obstruction causes an increase in pancreatic LTB4 concentrations that in turn mediates activation of TRPV1 resulting in acute pancreatitis.


Assuntos
Mediadores da Inflamação/farmacologia , Leucotrieno B4/farmacologia , Pancreatite/etiologia , Canais de Cátion TRPV/fisiologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Colestase/complicações , Modelos Animais de Doenças , Indóis/farmacologia , Mediadores da Inflamação/fisiologia , Leucotrieno B4/antagonistas & inibidores , Leucotrieno B4/fisiologia , Ligadura , Inibidores de Lipoxigenase/farmacologia , Masculino , Modelos Biológicos , Pancreatite/patologia , Pancreatite/fisiopatologia , Pancreatite/prevenção & controle , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores
20.
J Mol Histol ; 42(1): 3-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061049

RESUMO

The peptide tyrosine tyrosine (PYY) is produced and secreted from L cells of the gastrointestinal mucosa. To study the anatomy and function of PYY-secreting L cells, we developed a transgenic PYY-green fluorescent protein mouse model. PYY-containing cells exhibited green fluorescence under UV light and were immunoreactive to antibodies against PYY and GLP-1 (glucagon-like peptide-1, an incretin hormone also secreted by L cells). PYY-GFP cells from 15 µm thick sections were imaged using confocal laser scanning microscopy and three-dimensionally (3D) reconstructed. Results revealed unique details of the anatomical differences between ileal and colonic PYY-GFP cells. In ileal villi, the apical portion of PYY cells makes minimal contact with the lumen of the gut. Long pseudopod-like basal processes extend from these cells and form an interface between the mucosal epithelium and the lamina propria. Some basal processes are up to 50 µm in length. Multiple processes can be seen protruding from one cell and these often have a terminus resembling a synapse that appears to interact with neighboring cells. In colonic crypts, PYY-GFP cells adopt a spindle-like shape and weave in between epithelial cells, while maintaining contact with the lumen and lamina propria. In both tissues, cytoplasmic granules containing the hormones PYY and GLP-1 are confined to the base of the cell, often filling the basal process. The anatomical arrangement of these structures suggests a dual function as a dock for receptors to survey absorbed nutrients and as a launching platform for hormone secretion in a paracrine fashion.


Assuntos
Colo/citologia , Íleo/citologia , Peptídeo YY/metabolismo , Pseudópodes/metabolismo , Animais , Colo/metabolismo , Células Enteroendócrinas/citologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Íleo/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Transgênicos , Peptídeo YY/genética , Transporte Proteico/fisiologia , Pseudópodes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA