Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nephrol Dial Transplant ; 35(9): 1478-1487, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071222

RESUMO

Accumulating evidence indicates that the pathological changes of the endothelium may contribute to the development of cardiovascular complications in chronic kidney disease (CKD). Non-traditional risk factors related to CKD are associated with the incidence of cardiovascular disease, but their role in uraemic endothelial dysfunction has often been disregarded. In this context, soluble α-Klotho and vitamin D are of importance to maintain endothelial integrity, but their concentrations decline in CKD, thereby contributing to the dysfunction of the endothelial lining. These hormonal disturbances are accompanied by an increment of circulating fibroblast growth factor-23 and phosphate, both exacerbating endothelial toxicities. Furthermore, impaired renal function leads to an increment of inflammatory mediators, reactive oxygen species and uraemic toxins that further aggravate the endothelial abnormalities and in turn also inhibit the regeneration of disrupted endothelial lining. Here, we highlight the distinct endothelial alterations mediated by the abovementioned non-traditional risk factors as demonstrated in experimental studies and connect these to pathological changes in CKD patients, which are driven by endothelial disturbances, other than atherosclerosis. In addition, we describe therapeutic strategies that may promote restoration of endothelial abnormalities by modulating imbalanced mineral homoeostasis and attenuate the impact of uraemic retention molecules, inflammatory mediators and reactive oxygen species. A clinical perspective on endothelial dysfunction in CKD may translate into reduced structural and functional abnormalities of the vessel wall in CKD, and ultimately improved cardiovascular disease.


Assuntos
Endotélio Vascular/patologia , Insuficiência Renal Crônica/complicações , Doenças Vasculares/etiologia , Animais , Humanos , Doenças Vasculares/patologia
2.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235485

RESUMO

Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.


Assuntos
Ceruloplasmina/deficiência , Ceruloplasmina/genética , Distúrbios do Metabolismo do Ferro/genética , Doenças Neurodegenerativas/genética , Adulto , Idoso , Diagnóstico Precoce , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/patologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia
3.
Nephrol Dial Transplant ; 34(2): 252-264, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718431

RESUMO

Background: Uraemia induces endothelial cell (EC) injury and impaired repair capacity, for which the underlying mechanism remains unclear. Active vitamin D (VD) may promote endothelial repair, however, the mechanism that mediates the effects of VD in chronic kidney disease are poorly understood. Thus, we investigated uraemia-induced endothelial damage and the protection against such damage by active VD. Methods: We applied electric cell-substrate impedance sensing (ECIS) to study real-time responses of human ECs exposed to pooled uraemic and non-uraemic plasma with or without the addition of active VD. The effects of indoxyl sulphate and p-cresol were tested in non-uraemic plasma. Structural changes for vascular endothelial (VE)-cadherin and F-actin were assessed by immunostaining and quantified. Results: The exposure of ECs to uraemic media significantly decreased endothelial barrier function after 24 h. Cell migration after electrical wounding and recovery of the barrier after thrombin-induced loss of integrity were significantly impaired in uraemic-medium stimulated cells and cells exposed to indoxyl sulphate and p-cresol. This effect on ECIS was dependent on loss of cell-cell interaction. Mechanistically, we found that EC, exposed to uraemic media, displayed disrupted VE-cadherin interactions and F-actin reorganization. VD supplementation rescued both endothelial barrier function and cell-cell interactions in ECs exposed to uraemic media. These events were associated with an increment of VE-cadherin at intercellular junctions. Conclusions: Our data demonstrate a potentially clinically relevant mechanism for uraemia-induced endothelial damage. Furthermore, active VD rescued the uraemic medium-induced loss of cell-cell adhesion, revealing a novel role of active VD in preservation of endothelial integrity during uraemia.


Assuntos
Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Uremia/metabolismo , Vitamina D/farmacologia , Actinas/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Caderinas/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Cresóis/farmacologia , Endotélio Vascular/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Indicã/farmacologia , Junções Intercelulares/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Trombina/metabolismo , Uremia/tratamento farmacológico , Adulto Jovem
4.
Kidney Int ; 89(3): 625-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880457

RESUMO

Peritoneal dialysis (PD) can result in chronic inflammation and progressive peritoneal membrane damage. Alanyl-Glutamine (Ala-Gln), a dipeptide with immunomodulatory effects, improved resistance of mesothelial cells to PD fluids. Recently, interleukin-17 (IL-17) was found to be associated with PD-induced peritoneal damage. Here we studied the capacity of intraperitoneal Ala-Gln administration to protect against peritoneal damage by modulating IL-17 expression in uremic rat and mouse PD exposure models. Supplementation of PD fluid with Ala-Gln resulted in reduced peritoneal thickness, αSMA expression and angiogenesis. Addition of Ala-Gln also attenuated the IL-17 pathway expression induced by PD, reflected by substantial reduction or normalization of peritoneal levels of IL-17, transforming growth factor ß, IL-6, and the transcription factor retinoic acid receptor-related orphan receptor gamma T. Moreover, increased levels of IL-17 were associated with PD-induced peritoneal thickening. Conversely, Ala-Gln treatment prevented peritoneal extracellular matrix deposition, an effect seen with IL-17 blockade. Thus, intraperitoneal administration of Ala-Gln, a stable dipeptide commonly used in parenteral nutrition, ameliorates PD-induced peritoneal damage in animal models, in part by modulating IL-17 expression. Hence, Ala-Gln supplementation of dialysate may be a potential strategy to ameliorate peritoneal deterioration during PD.


Assuntos
Dipeptídeos/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-17/metabolismo , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/prevenção & controle , Peritônio/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Biomarcadores/metabolismo , Citoproteção , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Interleucina-17/genética , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/metabolismo , Peritônio/patologia , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
5.
Stem Cell Reports ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38876110

RESUMO

Functionality of the blood-brain barrier (BBB) relies on the interaction between endothelial cells (ECs), pericytes, and astrocytes to regulate molecule transport within the central nervous system. Most experimental models for the BBB rely on freshly isolated primary brain cells. Here, we explored human induced pluripotent stem cells (hiPSCs) as a cellular source for astrocytes in a 3D vessel-on-chip (VoC) model. Self-organized microvascular networks were formed by combining hiPSC-derived ECs, human brain vascular pericytes, and hiPSC-derived astrocytes within a fibrin hydrogel. The hiPSC-ECs and pericytes showed close interactions, but, somewhat unexpectedly, addition of astrocytes disrupted microvascular network formation. However, continuous fluid perfusion or activation of cyclic AMP (cAMP) signaling rescued the vascular organization and decreased vascular permeability. Nevertheless, astrocytes did not affect the expression of proteins related to junction formation, transport, or extracellular matrix, indicating that, despite other claims, hiPSC-derived ECs do not entirely acquire a BBB-like identity in the 3D VoC model.

6.
Stem Cell Reports ; 18(7): 1394-1404, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37390826

RESUMO

Functional vasculature is essential for delivering nutrients, oxygen, and cells to the heart and removing waste products. Here, we developed an in vitro vascularized human cardiac microtissue (MT) model based on human induced pluripotent stem cells (hiPSCs) in a microfluidic organ-on-chip by coculturing hiPSC-derived, pre-vascularized, cardiac MTs with vascular cells within a fibrin hydrogel. We showed that vascular networks spontaneously formed in and around these MTs and were lumenized and interconnected through anastomosis. Anastomosis was fluid flow dependent: continuous perfusion increased vessel density and thus enhanced the formation of the hybrid vessels. Vascularization further improved endothelial cell (EC)-cardiomyocyte communication via EC-derived paracrine factors, such as nitric oxide, and resulted in an enhanced inflammatory response. The platform sets the stage for studies on how organ-specific EC barriers respond to drugs or inflammatory stimuli.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Neovascularização Patológica , Células Endoteliais , Diferenciação Celular
7.
Curr Protoc ; 2(10): e564, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36250774

RESUMO

Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSC-VSMCs Support Protocol 1: Characterization of hiPSC-NCCs and hiPSC-VSMCs Support Protocol 2: Preparation of cryopreserved hiPSC-VSMCs and hiPSC-ECs for VoC culture Basic Protocol 2: Generation of 3D VoC model composed of hiPSC-ECs and hiPSC-VSMCs Support Protocol 3: Structural characterization of 3D VoC model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Compostos Orgânicos Voláteis , Colágeno/metabolismo , Células Endoteliais , Humanos , Dispositivos Lab-On-A-Chip , Miócitos de Músculo Liso , Compostos Orgânicos Voláteis/metabolismo
8.
Stem Cell Reports ; 16(9): 2159-2168, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34478648

RESUMO

Crosstalk between endothelial cells (ECs) and pericytes or vascular smooth muscle cells (VSMCs) is essential for the proper functioning of blood vessels. This balance is disrupted in several vascular diseases but there are few experimental models which recapitulate this vascular cell dialogue in humans. Here, we developed a robust multi-cell type 3D vessel-on-chip (VoC) model based entirely on human induced pluripotent stem cells (hiPSCs). Within a fibrin hydrogel microenvironment, the hiPSC-derived vascular cells self-organized to form stable microvascular networks reproducibly, in which the vessels were lumenized and functional, responding as expected to vasoactive stimulation. Vascular organization and intracellular Ca2+ release kinetics in VSMCs could be quantified using automated image analysis based on open-source software CellProfiler and ImageJ on widefield or confocal images, setting the stage for use of the platform to study vascular (patho)physiology and therapy.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Biomarcadores , Cálcio/metabolismo , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Diferenciação Celular , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Engenharia Tecidual/instrumentação
9.
J Am Heart Assoc ; 7(17): e008776, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30371149

RESUMO

Background Dysfunctional endothelium may contribute to the development of cardiovascular complications in chronic kidney disease ( CKD ). Supplementation with active vitamin D has been proposed to have vasoprotective potential in CKD , not only by direct effects on the endothelium but also by an increment of α-Klotho. Here, we explored the capacity of the active vitamin D analogue paricalcitol to protect against uremia-induced endothelial damage and the extent to which this was dependent on increased α-Klotho concentrations. Methods and Results In a combined rat model of CKD with vitamin D deficiency, renal failure induced vascular permeability and endothelial-gap formation in thoracic aorta irrespective of baseline vitamin D, and this was attenuated by paricalcitol. Downregulation of renal and serum α-Klotho was found in the CKD model, which was not restored by paricalcitol. By measuring the real-time changes of the human endothelial barrier function, we found that paricalcitol effectively improved the recovery of endothelial integrity following the addition of the pro-permeability factor thrombin and the induction of a wound. Furthermore, immunofluorescence staining revealed that paricalcitol promoted vascular endothelial-cadherin-based cell-cell junctions and diminished F-actin stress fiber organization, preventing the formation of endothelial intracellular gaps. Conclusions Our results demonstrate that paricalcitol attenuates the CKD -induced endothelial damage in the thoracic aorta and directly mediates endothelial stability in vitro by enforcing cell-cell interactions.


Assuntos
Aorta Torácica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Ergocalciferóis/farmacologia , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo , Deficiência de Vitamina D/metabolismo , Actinas/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta Torácica/metabolismo , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Glucuronidase/efeitos dos fármacos , Glucuronidase/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Proteínas Klotho , Ratos , Fibras de Estresse/efeitos dos fármacos
11.
Biomed Res Int ; 2015: 468574, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605330

RESUMO

Peritoneal dialysis (PD) is associated with structural and functional alterations of the peritoneal membrane, consisting of fibrosis, angiogenesis, and loss of ultrafiltration capacity. Vitamin D receptor activation (VDRA) plays an important role in mineral metabolism and inflammation, but also antiangiogenic and antifibrotic properties have been reported. Therefore, the effects of active vitamin D treatment on peritoneal function and remodeling were investigated. Rats were either kept naïve to PDF exposure or daily exposed to 10 mL PDF and were treated for five or seven weeks with oral paricalcitol or vehicle control. Non-PDF-exposed rats showed no peritoneal changes upon paricalcitol treatment. Paricalcitol reduced endogenous calcitriol but did not affect mineral homeostasis. However, upon PDF exposure, loss of ultrafiltration capacity ensued which was fully rescued by paricalcitol treatment. Furthermore, PD-induced ECM thickening was significantly reduced and omental PD-induced angiogenesis was less pronounced upon paricalcitol treatment. No effect of paricalcitol treatment on total amount of peritoneal cells, peritoneal leukocyte composition, and epithelial to mesenchymal transition (EMT) was observed. Our data indicates that oral VDRA reduces tissue remodeling during chronic experimental PD and prevents loss of ultrafiltration capacity. Therefore, VDRA is potentially relevant in the prevention of treatment technique failure in PD patients.


Assuntos
Ergocalciferóis/farmacologia , Neovascularização Patológica/prevenção & controle , Diálise Peritoneal/efeitos adversos , Peritônio/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Masculino , Neovascularização Patológica/etiologia , Peritônio/patologia , Ratos , Ratos Wistar
12.
Biomed Res Int ; 2015: 604275, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815325

RESUMO

Vitamin D deficiency is associated with a range of clinical disorders. To study the mechanisms involved and improve treatments, animal models are tremendously useful. Current vitamin D deficient rat models have important practical limitations, including time requirements when using, exclusively, a vitamin D deficient diet. More importantly, induction of hypovitaminosis D causes significant fluctuations in parathyroid hormone (PTH) and mineral levels, complicating the interpretation of study results. To overcome these shortcomings, we report the successful induction of vitamin D deficiency within three weeks, with stable serum PTH and minerals levels, in Wistar rats. We incorporated two additional manoeuvres compared to a conventional diet. Firstly, the vitamin D depleted diet is calcium (Ca) enriched, to attenuate the development of secondary hyperparathyroidism. Secondly, six intraperitoneal injections of paricalcitol during the first two weeks are given to induce the rapid degradation of circulating vitamin D metabolites. After three weeks, serum 25-hydroxyvitamin D3 (25D) and 1,25-dihydroxyvitamin D3 (1,25D) levels had dropped below detection limits, with unchanged serum PTH, Ca, and phosphate (P) levels. Therefore, this model provides a useful tool to examine the sole effect of hypovitaminosis D, in a wide range of research settings, without confounding changes in PTH, Ca, and P.


Assuntos
Cálcio/administração & dosagem , Ergocalciferóis/administração & dosagem , Deficiência de Vitamina D/sangue , Vitamina D/sangue , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Hiperparatireoidismo/sangue , Minerais/sangue , Hormônio Paratireóideo/sangue , Ratos , Vitamina D/administração & dosagem , Deficiência de Vitamina D/induzido quimicamente , Deficiência de Vitamina D/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA