Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 478(2262): 20210764, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35756875

RESUMO

Histories of large-scale horizontal and vertical lithosphere motion hold important information on mantle convection. Here, we compare continent-scale hiatus maps as a proxy for mantle flow induced dynamic topography and plate motion variations in the Atlantic and Indo-Australian realms since the Upper Jurassic, finding they frequently correlate, except when plate boundary forces may play a significant role. This correlation agrees with descriptions of asthenosphere flow beneath tectonic plates in terms of Poiseuille/Couette flow, as it explicitly relates plate motion changes, induced by evolving basal shear forces, to non-isostatic vertical motion of the lithosphere. Our analysis reveals a timescale, on the order of a geological series, between the occurrence of continent-scale hiatus and plate motion changes. This is consistent with the presence of a weak upper mantle. It also shows a spatial scale for interregional hiatus, on the order of 2000-3000 km in diameter, which can be linked by fluid dynamic analysis to active upper mantle flow regions. Our results suggest future studies should pursue large-scale horizontal and vertical lithosphere motion in combination, to track the expressions of past mantle flow. Such studies would provide powerful constraints for adjoint-based geodynamic inverse models of past mantle convection.

2.
Proc Math Phys Eng Sci ; 476(2242): 20200390, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33223939

RESUMO

Interregional geological maps hold important information for geodynamic models. Here, we use such maps to visualize major conformable and unconformable contacts at interregional scales and at the level of geologic series from the Upper Jurassic onward across North and South America, Europe, Africa and Australia. We extract hiatus information from these paleogeological maps, which we plot in a paleogeographical reference frame to link the maps to the plate and plume modes of mantle convection. We assume that interregional patterns of hiatus surfaces are proxy records of continent-scale mantle-induced vertical motion of the lithosphere. We find significant differences in the distribution of hiatus across and between continents at the timescale of geologic series, that is ten to a few tens of millions of years (Myrs). This is smaller than the mantle transit time, which, as the timescale of convection, is about 100-200 Myrs. Our results imply that different timescales for convection and topography in convective support must be an integral component of time-dependent geodynamic Earth models, consistent with the presence of a weaker upper mantle relative to the lower mantle. Additional geological constraints together with interregional geological maps at the resolution of stages (1-2 Myrs), are needed to assist in future geodynamic interpretations of interregional geologic hiatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA