Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 26(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921801

RESUMO

Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar "Fuji", cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.


Assuntos
Amiloide/química , Caseínas/química , Malus/química , Microscopia de Força Atômica
2.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629793

RESUMO

Hydroxytyrosol (HT), one of the main phenolic components of olive oil, has attracted considerable interest for its biological properties, including a remarkable antioxidant and anti-inflammatory power and, recently, for its ability to interfere with the amyloid aggregation underlying several human diseases. We report here a broad biophysical approach and cell biology techniques that allowed us to characterize the molecular mechanisms by which HT affects insulin amyloid aggregation and the related cytotoxicity. Our data show that HT is able to fully inhibit insulin amyloid aggregation and this property seems to be ascribed to the stabilization of the insulin monomeric state. Moreover, HT completely reverses the toxic effect produced by amyloid insulin aggregates in neuroblastoma cell lines by fully inhibiting the production of toxic amyloid species. These findings suggest that the beneficial effects of olive oil polyphenols, including HT, may arise from multifunctional activities and suggest possible a application of this natural compound in the prevention or treatment of amyloid-associated diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Insulina/metabolismo , Álcool Feniletílico/análogos & derivados , Amiloide , Amiloidose , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Insulina/farmacologia , Insulina/fisiologia , Azeite de Oliva/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/metabolismo , Álcool Feniletílico/farmacologia , Polifenóis/farmacologia , Agregação Patológica de Proteínas/metabolismo
3.
Biochim Biophys Acta ; 1860(11 Pt A): 2474-2483, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27474204

RESUMO

BACKGROUND: Molecular chaperones are a very special class of proteins that play essential roles in many cellular processes like folding, targeting and transport of proteins. Moreover, recent evidence indicates that chaperones can act as potentially strong suppressor agents in Alzheimer's disease (AD). Indeed, in vitro experiments demonstrate that several chaperones are able to significantly slow down or suppress aggregation of Aß peptide and in vivo studies reveal that treatment with specific chaperones or their overexpression can ameliorate some distinct pathological signs characterizing AD. METHODS: Here we investigate using a biophysical approach (fluorescence, circular dichroism (CD), transmission electron (TEM) and atomic force (AFM) microscopy, size exclusion chromatography (SEC)) the effect of the human chaperonin Hsp60 on Aß fibrillogenesis. RESULTS: We found that Hsp60 powerfully inhibits Aß amyloid aggregation, by closing molecular pathways leading to peptide fibrillogenesis. CONCLUSIONS: We observe that Hsp60 inhibits Aß aggregation through a more complex mechanism than a simple folding chaperone action. The action is specifically directed toward the early oligomeric species behaving as aggregation seeds for on-pathway amyloid fibrillogenesis. GENERAL SIGNIFICANCE: Understanding the specificity of the molecular interactions of Hsp60 with amyloid Aß peptide allowed us to emphasize the important aspects to be taken into consideration when considering the recent promising therapeutic strategies for neurodegeneration.


Assuntos
Amiloide/química , Chaperonina 60/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Chaperonina 60/metabolismo , Humanos , Ligação Proteica
4.
J Cell Physiol ; 228(6): 1359-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23192898

RESUMO

A range of debilitating human diseases is known to be associated with the formation of stable highly organized protein aggregates known as amyloid fibrils. The early prefibrillar aggregates behave as cytotoxic agents and their toxicity appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increase in free Ca(2+) that lead to apoptotic or necrotic cell death. However, specific signaling pathways that underlie amyloid pathogenicity remain still unclear. This work aimed to clarify cell impairment induced by amyloid aggregated. To this end, we used a combined proteomic and one-dimensional (1) H-NMR approach on NIH-3T3 cells exposed to prefibrillar aggregates from the amyloidogenic apomyoglobin mutant W7FW14F. The results indicated that cell exposure to prefibrillar aggregates induces changes of the expression level of proteins and metabolites involved in stress response. The majority of the proteins and metabolites detected are reported to be related to oxidative stress, perturbation of calcium homeostasis, apoptotic and survival pathways, and membrane damage. In conclusion, the combined proteomic and (1) H-NMR metabonomic approach, described in this study, contributes to unveil novel proteins and metabolites that could take part to the general framework of the toxicity induced by amyloid aggregates. These findings offer new insights in therapeutic and diagnostic opportunities.


Assuntos
Amiloide/toxicidade , Fibroblastos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Proteômica/métodos , Amiloide/metabolismo , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Células NIH 3T3 , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Eur Biophys J ; 41(7): 615-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22722892

RESUMO

Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W → F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.


Assuntos
Amiloide/química , Apoproteínas/química , Modelos Moleculares , Mioglobina/química , Fenilalanina/química , Triptofano/química , Sequência de Aminoácidos , Animais , Apoproteínas/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Mioglobina/genética , Fenilalanina/genética , Conformação Proteica , Dobramento de Proteína , Análise Espectral , Triptofano/genética , Baleias
6.
Life (Basel) ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35330199

RESUMO

Insulin is a hormone that attends to energy metabolism by regulating glucose levels in the bloodstream. It is synthesised within pancreas beta-cells where, before being released into the serum, it is stored in granules as hexamers coordinated by Zn2+ and further packaged in microcrystalline structures. The group I chaperonin cpn60, known for its assembly-assisting function, is present, together with its cochaperonin cpn10, at each step of the insulin secretory pathway. However, the exact function of the heat shock protein in insulin biosynthesis and processing is still far from being understood. Here we explore the possibility that the molecular machine cpn60/cpn10 could have a role in insulin hexameric assembly and its further crystallization. Moreover, we also evaluate their potential protective effect in pathological insulin aggregation. The experiments performed with the cpn60 bacterial homologue, GroEL, in complex with its cochaperonin GroES, by using spectroscopic methods, microscopy and hydrodynamic techniques, reveal that the chaperonins in vitro favour insulin hexameric organisation and inhibit its aberrant aggregation. These results provide new details in the field of insulin assembly and its related disorders.

7.
Biochim Biophys Acta Proteins Proteom ; 1870(6): 140793, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35618206

RESUMO

The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Although missing part of the Cbl binding domain, p.R132X is associated to late-onset symptoms and, therefore, it is supposed to retain residual function. However, to our knowledge structural-functional studies on c.394C > T mutant aimed at verifying this hypothesis are still lacking. By using a biophysical approach including Circular Dichroism, fluorescence, Small Angle X-ray Scattering, and Molecular Dynamics, we show that the mutant protein MMACHC-R132X retains secondary structure elements and remains compact in solution, partly preserving its binding affinity for Cbl. Insights on the fragile stability of MMACHC-R132X-Cbl are provided.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Homocistinúria , Erros Inatos do Metabolismo dos Aminoácidos/genética , Proteínas de Transporte , Criança , Homocistinúria/diagnóstico , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Humanos , Mutação , Oxirredutases/metabolismo , Vitamina B 12/metabolismo
8.
J Cell Physiol ; 221(2): 412-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19585524

RESUMO

We have previously reported that addition of prefibrillar aggregates (PFAs) derived from W7FW14F apomyoglobin mutant to NIH-3T3 cells affects their viability. In this article, we have found that cytotoxicity induced by PFAs in NIH 3T3 and SH-SY5Y human neuroblastoma cells was due to early activation of apoptotic cell death dependent from a caspase-3- and -9-mediated mitochondrial pathway. A time-dependent increase of intracellular ROS and an about twofold decrease of mitochondrial localization of scavenger protein MnSOD was found. The use of the anti-oxidant agent N-acetyl-cysteine (NAC) antagonized both the increase of intracellular ROS and apoptosis induced by PFAs. PFAs caused an about 60% increase of the activity of both Ras and Erk-1/2 at 30 and 45 min while they were restored to basal levels at later time points. This effect was paralleled by a time-dependent decrease of the activity of the survival enzyme Akt. Effects similar to those on Ras activity were also recorded on the activity of the stress involved small GTP binding protein Rac that was about 75% increased after 30 min but resumed to basal levels at later time points. This effect was paralleled by a time-dependent activation of p38 kinase activity and HSP-70 expression. The use of both the ras farnesyltransferase inhibitor tipifarnib and the Rac geranyl-geranyltransferase GGTI-298, but not of the MEK-1 inhibitor U0126 partially antagonized the effects of PFAs on apoptosis occurrence. On the other hand, the PI3K/Akt inhibitor LY 294002 potentiated apoptosis induced by PFAs. Our results indicate a role for Ras and Rac in the induction of both intracellular ROS increased levels and apoptosis mediated by PFAs and disclose a new scenario of intervention in neurodegenerative diseases.


Assuntos
Amiloide/farmacologia , Apoproteínas/química , Apoptose/efeitos dos fármacos , Mioglobina/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Amiloide/química , Animais , Benzamidas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Humanos , Camundongos , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/farmacologia , Estrutura Quaternária de Proteína , Quinolonas/farmacologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas ras/antagonistas & inibidores
9.
ACS Chem Neurosci ; 10(8): 3565-3574, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31298838

RESUMO

Alzheimer's disease is a chronic neurodegenerative disease characterized by the accumulation of pathological aggregates of amyloid beta peptide. Many efforts have been focused on understanding peptide aggregation pathways and on identification of molecules able to inhibit aggregation in order to find an effective therapy. As a result, interest in neuroprotective proteins, such as molecular chaperones, has increased as their normal function is to assist in protein folding or to facilitate the disaggregation and/or clearance of abnormal aggregate proteins. Using biophysical techniques, we evaluated the effects of two chaperones, human Hsp60 and bacterial GroEL, on the fibrillogenesis of Aß1-42. Both chaperonins interfere with Aß1-42 aggregation, but the effect of Hsp60 is more significant and correlates with its more pronounced flexibility and stronger interaction with ANS, an indicator of hydrophobic regions. Dose-dependent ThT fluorescence kinetics and SAXS experiments reveal that Hsp60 does not change the nature of the molecular processes stochastically leading to the formation of seeds, but strongly delays them by recognition of hydrophobic sites of some peptide species crucial for triggering amyloid formation. Hsp60 reduces the initial chaotic heterogeneity of Aß1-42 sample at high concentration regimes. The understanding of chaperone action in counteracting pathological aggregation could be a starting point for potential new therapeutic strategies against neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Chaperonina 60/farmacologia , Proteínas Mitocondriais/farmacologia , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Humanos , Dobramento de Proteína/efeitos dos fármacos
10.
J Phys Chem B ; 123(3): 631-638, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30569709

RESUMO

The understanding of amyloid ß-peptide (Aß) interactions with cellular membranes is a crucial molecular challenge against Alzheimer's disease. Indeed, Aß prefibrillar oligomeric intermediates are believed to be the most toxic species, able to induce cellular damages directly by membrane damage. We present a neutron-scattering study on the interaction of large unilamellar vesicles (LUV), as cell membrane models, with both freshly dissolved Aß and early toxic prefibrillar oligomers, intermediate states in the amyloid pathway. In addition, we explore the effect of coincubating the Aß-peptide with the chaperonin Hsp60, which is known to strongly interact with it in its aggregation pattern. In fact, the interaction of the LUV with coincubated Aß/Hsp60, right after mixing and after following the aggregation protocol leading to the toxic intermediates in the absence of Hsp60, is studied. Neutron spin echo experiments show that the interaction with both freshly dissolved and aggregate Aß species brings about an increase in membrane stiffness, whereas the presence of even very low amounts of Hsp60 (ratio Aß/Hsp60 = 25:1) maintains unaltered the elastic properties of the membrane bilayer. A coherent interpretation of these results, related to previous literature, can be based on the ability of the chaperonin to interfere with Aß aggregation, by the specific recognition of the Aß-reactive transient species. In this framework, our results strongly suggest that early in a freshly dissolved Aß solution are present some species able to modify the bilayer dynamics, and the chaperonin plays the role of an assistant in such stochastic "misfolding events", avoiding the insult on the membrane as well as the onset of the aggregation cascade.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Chaperonina 60/metabolismo , Fragmentos de Peptídeos/metabolismo , Lipossomas Unilamelares/metabolismo , Animais , Bovinos , Gangliosídeos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química , Fosfatidilserinas/química , Multimerização Proteica , Lipossomas Unilamelares/química
11.
FEBS J ; 275(4): 763-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18215165

RESUMO

The potent immunomodulatory, anti-inflammatory and procoagulant properties of protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have previously been found to be modulated by a supramolecular monomer-trimer equilibrium. More structural details that integrate experimental data into a predictive framework have recently been reported. Unfortunately, homology modelling and fold-recognition strategies were not successful in creating a theoretical model of the structural organization of SV-IV. It was inferred that the global structure of SV-IV is not similar to that of any protein of known three-dimensional structure. Reversing the classical approach to the sequence-structure-function paradigm, in this paper we report novel information obtained by comparing the physicochemical parameters of SV-IV with two datasets composed of intrinsically unfolded and ideally globular proteins. In addition, we analyse the SV-IV sequence by several publicly available disorder-oriented predictors. Overall, disorder predictions and a re-examination of existing experimental data strongly suggest that SV-IV needs large plasticity to efficiently interact with the different targets that characterize its multifaceted biological function, and should therefore be better classified as an intrinsically disordered protein.


Assuntos
Androgênios/metabolismo , Proteínas Secretadas pela Vesícula Seminal/química , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Sequência de Aminoácidos , Animais , Biologia Computacional , Bases de Dados de Proteínas , Masculino , Dados de Sequência Molecular , Ratos , Proteínas Secretadas pela Vesícula Seminal/genética , Análise de Sequência de Proteína
12.
Protein Sci ; 16(3): 507-16, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17242379

RESUMO

Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.


Assuntos
Amiloide/química , Apoproteínas/química , Heme/química , Mioglobina/química , Amiloide/metabolismo , Animais , Apoproteínas/metabolismo , Dicroísmo Circular , Heme/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Força Atômica , Mioglobina/metabolismo , Células NIH 3T3 , Ligação Proteica , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
13.
FASEB J ; 20(2): 346-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16317065

RESUMO

A significant number of fatal diseases are classified as protein deposition disorders, in which a normally soluble protein is deposited in an insoluble amyloid form. It has been reported that tetracycline exhibits anti-amyloidogenic activity by inhibiting aggregate formation and disaggregating preformed fibrils. In this work, we examined the effect induced by the presence of tetracycline on the fibrillogenesis and cytotoxicity of the amyloid-forming apomyoglobin mutant W7FW14F. Like other amyloid-forming proteins, early prefibrillar aggregates formed by this protein are highly cytotoxic, whereas insoluble mature fibrils are not. The effect induced by tetracycline on the fibrillation process has been examined by atomic force microscopy, light scattering, DPH staining, and thioflavin T fluorescence. The cytotoxicity of the amyloid aggregates was estimated by measuring cell viability using MTT assay. The results show that tetracycline acts as anti-aggregating agent, which inhibits the fibril elongation process but not the early aggregation steps leading to the formation of soluble oligomeric aggregates. Thus, this inhibition keeps the W7FW14F mutant in a prefibrillar, highly cytotoxic state. In this respect, a careful usage of tetracycline as fibril inhibitor is indicated.


Assuntos
Amiloide/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Tetraciclina/farmacologia , Animais , Apoproteínas/genética , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Mutação , Mioglobina/genética , Células NIH 3T3 , Inibidores da Síntese de Proteínas/farmacologia
14.
Front Mol Biosci ; 4: 99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29423396

RESUMO

Chaperonins play various physiological roles and can also be pathogenic. Elucidation of their structure, e.g., oligomeric status and post-translational modifications (PTM), is necessary to understand their functions and mechanisms of action in health and disease. Group I chaperonins form tetradecamers with two stacked heptameric rings. The tetradecamer is considered the typical functional complex for folding of client polypeptides. However, other forms such as the monomer and oligomers with smaller number of subunits than the classical tetradecamer, also occur in cells. The properties and functions of the monomer and oligomers, and their roles in chaperonin-associated diseases are still incompletely understood. Chaperonin I in eukaryotes occurs in various locations, not just the mitochondrion, which is its canonical place of residence and function. Eukaryotic Chaperonin I, namely Hsp60 (designated HSP60 or HSPD1 in humans) has, indeed, been found in the cytosol; the plasma-cell membrane; on the outer surface of cells; in the intercellular space; in biological liquids such as lymph, blood, and cerebrospinal fluid; and in secretions, for instance saliva and urine. Hsp60 has also been found in cell-derived vesicles such as exosomes. The functions of Hsp60 in all these non-canonical locales are still poorly characterized and one of the questions not yet answered is in what form, i.e., monomer or oligomer, is the chaperonin present in these non-canonical locations. In view of the steady increase in interest on chaperonopathies over the last several years, we have studied human HSP60 to determine its role in various diseases, its locations in cells and tissues and migrations in the body, and its post-translational modifications that might have an impact on its location and function. We also carried out experiments to characterize the oligomeric status of extramitochondrial of HSP60 in solution. Here, we provide an overview of our results, focusing on the oligomeric equilibrium and stability of the various forms of HSP60 in comparison with GroEL. We also discuss post-translational modifications associated with anti-cancer drugs to indicate the potential of Hsp60 in Medicine, as a biomarker and etiopathogenic factor.

15.
Biophys Chem ; 229: 31-38, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28774748

RESUMO

In the large class of molecules that maintain protein homeostasis, called molecular chaperones, chaperonins constitute a subclass that specifically assist the correct folding of newly synthesized proteins. Among them, Hsp60 is composed of a double heptameric ring structure with a large central cavity where the unfolded protein binds via hydrophobic interactions and is supported, in this function, by the co-chaperonin Hsp10. Hsp60 is typically located in the mitochondria, but in some pathological situations, such as cancers and chronic inflammatory diseases, Hsp60 accumulates in the cytoplasm. In these cases, cytoplasmatic Hsp60 is a mixture of mitochondrial Hsp60 secreted from mitochondria upon stress, and its precursor, called naïve Hsp60, never entered into the organella. The difference between the naïve and mitochondrial Hsp60s resides in the absence of the mitochondrial import signal (MIS) in the mitochondrial form, but information on their different structure and stability is still lacking. We present here a study on the stability against a chemical denaturant, of the different cytoplasmic Hsp60 species. By combining Circular Dichroism and Small Angle X-ray Scattering as experimental biophysical techniques to investigate Hsp60, we find that naïve and mitochondrial Hsp60 (mtHsp60) forms differ in their stability. Furthermore, specific responses from the two forms are discussed in terms of the biological environment they are working in, thus opening new questions on their biological function.


Assuntos
Chaperonina 60/química , Mitocôndrias/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Dicroísmo Circular , Escherichia coli/metabolismo , Guanidina/química , Desnaturação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios X
16.
FEBS Lett ; 580(6): 1681-4, 2006 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16494869

RESUMO

In protein deposition disorders, a normally soluble protein is deposited as insoluble aggregates, referred to as amyloid. The intrinsic effects of specific mutations on the rates of protein aggregation and amyloid formation of unfolded polypeptide chains can be correlated with changes in hydrophobicity, propensity to convert alpha-helical to beta sheet conformation and charge. In this paper, we report the aggregation rates of buffalo, horse and bovine apomyoglobins. The experimental values were compared with the theoretical ones evaluated considering the amino acid differences among the sequences. Our results show that the mutations which play critical roles in the rate-determining step of apomyoglobin aggregation are those located within the N-terminal region of the molecule.


Assuntos
Amiloide/química , Apoproteínas/química , Mioglobina/química , Sequência de Aminoácidos , Amiloide/genética , Animais , Apoproteínas/genética , Búfalos , Bovinos , Cavalos , Cinética , Dados de Sequência Molecular , Mioglobina/genética , Estrutura Secundária de Proteína
17.
Biophys Chem ; 208: 68-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26259786

RESUMO

Human Hsp60 chaperonin and its bacterial homolog GroEL, in association with the corresponding co-chaperonins Hsp10 and GroES, constitute important chaperone systems promoting the proper folding of several mitochondrial proteins. Hsp60 is also currently described as a ubiquitous molecule with multiple roles both in health conditions and in several diseases. Naïve Hsp60 bearing the mitochondrial import signal has been recently demonstrated to present different oligomeric organizations with respect to GroEL, suggesting new possible physiological functions. Here we present a combined investigation with circular dichroism and small-angle X-ray scattering of structure, self-organization, and stability of naïve Hsp60 in solution in comparison with bacterial GroEL. Experiments have been performed in different concentrations of guanidine hydrochloride, monitoring the dissociation of tetradecamers into heptamers and monomers, until unfolding. GroEL is proved to be more stable with respect to Hsp60, and the unfolding free energy as well as its dependence on denaturant concentration is obtained.


Assuntos
Proteínas de Bactérias/química , Chaperonina 60/química , Proteínas Mitocondriais/química , Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Dicroísmo Circular , Humanos , Proteínas Mitocondriais/metabolismo , Estabilidade Proteica , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
18.
Aging (Albany NY) ; 8(8): 1718-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509335

RESUMO

The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of ß-secretase (BACE1) and ß-amyloid precursor protein (APP), promoting processing and aggregation of ß-amyloid (Aß), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aß. By using biophysical techniques we found that metformin is able to directly interact with Aß influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Mitocôndrias/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Hexoquinase/metabolismo , Camundongos , Canal de Ânion 1 Dependente de Voltagem/metabolismo
19.
PLoS One ; 9(5): e97657, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830947

RESUMO

It has been established that Hsp60 can accumulate in the cytosol in various pathological conditions, including cancer and chronic inflammatory diseases. Part or all of the cytosolic Hsp60 could be naïve, namely, bear the mitochondrial import signal (MIS), but neither the structure nor the in solution oligomeric organization of this cytosolic molecule has still been elucidated. Here we present a detailed study of the structure and self-organization of naïve cytosolic Hsp60 in solution. Results were obtained by different biophysical methods (light and X ray scattering, single molecule spectroscopy and hydrodynamics) that all together allowed us to assay a wide range of concentrations of Hsp60. We found that Naïve Hsp60 in aqueous solution is assembled in very stable heptamers and tetradecamers at all concentrations assayed, without any trace of monomer presence.


Assuntos
Chaperonina 60/química , Mitocôndrias/química , Proteínas Mitocondriais/química , Adenosina Trifosfatases/química , Sistema Livre de Células , Citosol/química , Humanos , Hidrólise , Inflamação , Ligação Proteica , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência
20.
Protein Pept Lett ; 20(8): 898-904, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23343142

RESUMO

Myoglobin is an α-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues impairs the productive folding of the protein making the polypeptide chain highly prone to aggregate forming amyloid fibrils at physiological pH and room temperature. The role played by tryptophanyl residues in driving the productive folding process was investigated by providing structural details at low resolution of compact intermediate of three mutated apomyoglobins, i.e., W7F, W14F and the amyloid forming mutant W7FW14F. In particular, we followed the hydrogen/deuterium exchange rate of protein segments using proteolysis with pepsin followed by mass spectrometry analysis. The results revealed significant differences in the N-terminal region, consisting in an alteration of the physico-chemical properties of the 7-11 segment for W7F and in an increase of local flexibility of the 12-29 segment for W14F. In the double trypthophanyl substituted mutant, these effects are additive and impair the formation of native-like contacts and favour inter-chain interactions leading to protein aggregation and amyloid formation at physiological pH.


Assuntos
Amiloide/química , Apoproteínas/química , Mioglobina/química , Fragmentos de Peptídeos/química , Amiloide/metabolismo , Apoproteínas/metabolismo , Medição da Troca de Deutério , Espectrometria de Massas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mioglobina/metabolismo , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA