Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microb Pathog ; 119: 60-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29608932

RESUMO

Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP), encoded by deoD gene (Rv3307), is an enzyme from the purine salvage pathway, which has been widely studied as a molecular target for the development of inhibitors with potential antimycobacterial activity. However, the role of MtPNP in tuberculosis pathogenesis and dormancy is still unknown. The present work aims to construct a deoD knockout strain from M. tuberculosis, to evaluate the role of MtPNP in the growth of M. tuberculosis under oxygenated condition and in a dormancy model, and to assess whether deoD gene is important for M. tuberculosis invasion and growth in macrophages. The construction of a knockout strain for deoD gene was confirmed at DNA level by PCR and protein level by Western blot and LC-MS/MS. The deoD gene is not required for M. tuberculosis growth and survival under oxygenated and hypoxic conditions. The disruption of deoD gene did not affect mycobacterial ability to invade and grow in RAW 264.7 cells under the experimental conditions employed here.


Assuntos
Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/fisiologia , Animais , Sequência de Bases , Cromatografia Líquida , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Bacterianos/genética , Camundongos , Mycobacterium tuberculosis/patogenicidade , Oxigênio/metabolismo , Células RAW 264.7 , Espectrometria de Massas em Tandem , Tuberculose/microbiologia
2.
Mem Inst Oswaldo Cruz ; 112(3): 203-208, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28225907

RESUMO

BACKGROUND: Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis. The better understanding of important metabolic pathways from M. tuberculosis can contribute to the development of novel therapeutic and prophylactic strategies to combat TB. Nucleoside hydrolase (MtIAGU-NH), encoded by iunH gene (Rv3393), is an enzyme from purine salvage pathway in M. tuberculosis. MtIAGU-NH accepts inosine, adenosine, guanosine, and uridine as substrates, which may point to a pivotal metabolic role. OBJECTIVES: Our aim was to construct a M. tuberculosis knockout strain for iunH gene, to evaluate in vitro growth and the effect of iunH deletion in M. tuberculosis in non-activated and activated macrophages models of infection. METHODS: A M. tuberculosis knockout strain for iunH gene was obtained by allelic replacement, using pPR27xylE plasmid. The complemented strain was constructed by the transformation of the knockout strain with pNIP40::iunH. MtIAGU-NH expression was analysed by Western blot and LC-MS/MS. In vitro growth was evaluated in Sauton's medium. Bacterial load of non-activated and interferon-γ activated RAW 264.7 cells infected with knockout strain was compared with wild-type and complemented strains. FINDINGS: Western blot and LC-MS/MS validated iunH deletion at protein level. The iunH knockout led to a delay in M. tuberculosis growth kinetics in Sauton's medium during log phase, but did not affect bases and nucleosides pool in vitro. No significant difference in bacterial load of knockout strain was observed when compared with both wild-type and complemented strains after infection of non-activated and interferon-γ activated RAW 264.7 cells. MAIN CONCLUSION: The disruption of iunH gene does not influence M. tuberculosis growth in both non-activated and activated RAW 264.7 cells, which show that iunH gene is not important for macrophage invasion and virulence. Our results indicated that MtIAGU-NH is not a target for drug development.


Assuntos
Técnicas de Inativação de Genes , Genes Bacterianos , Mycobacterium tuberculosis/genética , N-Glicosil Hidrolases/genética , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento
3.
Mem Inst Oswaldo Cruz ; 112(11): 785-789, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091140

RESUMO

Cytidine deaminase (MtCDA), encoded by cdd gene (Rv3315c), is the only enzyme identified in nucleotide biosynthesis pathway of Mycobacterium tuberculosis that is able to recycle cytidine and deoxycytidine. An M. tuberculosis knockout strain for cdd gene was obtained by allelic replacement. Evaluation of mRNA expression validated cdd deletion and showed the absence of polar effect. MudPIT LC-MS/MS data indicated thymidine phosphorylase expression was decreased in knockout and complemented strains. The cdd disruption does not affect M. tuberculosis growth both in Mid- dlebrook 7H9 and in RAW 264.7 cells, which indicates that cdd is not important for macrophage invasion and virulence.


Assuntos
Citidina Desaminase/genética , Desoxicitidina/genética , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Citidina Desaminase/biossíntese , Desoxicitidina/biossíntese , Técnicas de Inativação de Genes , Humanos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fatores de Tempo
4.
J Biol Chem ; 287(47): 39933-41, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23038254

RESUMO

The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-ß-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Galactanos/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Arabinose/genética , Arabinose/metabolismo , Proteínas de Bactérias/genética , Galactanos/genética , Teste de Complementação Genética , Glicosilação , Lipopolissacarídeos/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética
5.
Front Immunol ; 11: 557809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013927

RESUMO

Chemotherapeutic intervention remains the primary strategy in treating and controlling tuberculosis (TB). However, a complex interplay between therapeutic and patient-related factors leads to poor treatment adherence. This in turn continues to give rise to unacceptably high rates of disease relapse and the growing emergence of drug-resistant forms of TB. As such, there is considerable interest in strategies that simultaneously improve treatment outcome and shorten chemotherapy duration. Therapeutic vaccines represent one such approach which aims to accomplish this through boosting and/or priming novel anti-TB immune responses to accelerate disease resolution, shorten treatment duration, and enhance treatment success rates. Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and clinical assessment, showing varying degrees of efficacy. By dissecting the underlying mechanisms/correlates of their successes and/or shortcomings, strategies can be identified to improve existing and future vaccine candidates. This mini-review will discuss the current understanding of therapeutic TB vaccine candidates, and discuss major strategies that can be implemented in advancing their development.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Imunoterapia , Mycobacterium tuberculosis/fisiologia , Medicina de Precisão , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Vacinas contra a Tuberculose/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinologia/métodos
6.
Int J Antimicrob Agents ; 51(3): 378-384, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28843821

RESUMO

The 2-(quinolin-4-yloxy)acetamides (QOAs) have been reported to be promising molecules for tuberculosis treatment. Recent studies demonstrated their potent antimycobacterial activity, biological stability and synergism with rifampicin. The identification of the molecular target is an essential step towards the development of a novel drug candidate. Here, we report the target identification of the QOAs. We found that these compounds are active against Mycobacterium tuberculosis clinical isolates resistant to isoniazid, rifampicin, ethambutol, streptomycin and ethionamide. The initial evidence that DNA gyrase might be the target of QOAs, based on high minimum inhibitory concentration (MIC) values against ofloxacin-resistant clinical isolates and structural similarities with fluoroquinolones, was discarded by experiments performed with M. tuberculosis GyrA point mutant, DNA gyrase supercoiling inhibition assay and overexpression of DNA gyrase. We selected spontaneous mutants for our lead compound 21 and observed that these strains were also resistant to all QOA derivatives. The genomes of the spontaneous mutants were sequenced, and the results revealed a single mutation in qcrB gene (T313A), which indicates that the QOAs target the cytochrome bc1 complex. The protein-compound interaction was further investigated by molecular docking. These findings reinforce the relevance of these compounds as promising candidates for the treatment of multidrug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/farmacologia , Análise Mutacional de DNA , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/microbiologia , Sequenciamento Completo do Genoma
7.
J Inorg Biochem ; 179: 71-81, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175704

RESUMO

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.


Assuntos
Antituberculosos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Isoniazida/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Isoniazida/síntese química , Isoniazida/química , Testes de Sensibilidade Microbiana , Modelos Químicos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredução
8.
Eur J Med Chem ; 155: 153-164, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885576

RESUMO

Using a classical hybridization approach, a series of 1H-benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones were synthesized (39 examples) and evaluated as inhibitors of Mycobacterium tuberculosis growth. Chemical modification studies yielded potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.24 µM against M. tuberculosis H37Rv strain. Further, the synthesized compounds were active against four drug-resistant strains containing different levels of resistance for the first line drugs. These molecules were devoid of apparent toxicity to HepG2, HaCat, and Vero cells with IC50s > 30 µM. Viability in mammalian cell cultures was evaluated using MTT and neutral red assays. In addition, some 3,4-dihydroquinazolin-4-ones showed low risk of cardiac toxicity, no signals of neurotoxicity or morphological alteration in zebrafish (Danio rerio) toxicity models. 3,4-Dihydroquinazolin-4-ones 9q and 9w were considered the lead compounds of these series of molecules with MIC values of 0.24 µM and 0.94 µM against M. tuberculosis H37Rv, respectively. Taken together, these data indicate that this class of compounds may furnish candidates for future development of novel anti-TB drugs.


Assuntos
Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinonas/síntese química , Quinazolinonas/química , Relação Estrutura-Atividade , Peixe-Zebra
9.
FEMS Microbiol Lett ; 364(4)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130366

RESUMO

The upp (Rv3309c)-encoded uracil phosphoribosyltransferase from Mycobacterium tuberculosis (MtUPRT) converts uracil and 5-phosphoribosyl-α-1-pyrophosphate into pyrophosphate and uridine 5΄-monophosphate, the precursor of all pyrimidine nucleotides. A M. tuberculosis knockout strain for upp gene was generated by allelic replacement. Knockout and complemented strains were validated by a functional assay of uracil incorporation. A basal level of MtUPRT expression is shown to be independent of either growth medium used, addition of bases, or oxygen presence/absence. The upp disruption does not affect M. tuberculosis growth in Middlebrook 7H9 medium, and it is not required for M. tuberculosis virulence in a mouse model of infection. Thus, MtUPRT is unlikely to be a good target for drugs against M. tuberculosis.


Assuntos
Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Pentosiltransferases/genética , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pentosiltransferases/metabolismo , Uracila/metabolismo , Uracila/farmacologia , Virulência
10.
Eur J Med Chem ; 126: 491-501, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27914363

RESUMO

2-(Quinolin-4-yloxy)acetamides have been described as potent and selective in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Herein, a new series of optimized compounds were found to demonstrate highly potent antitubercular activity, with minimum inhibitory concentration (MIC) values against drug-susceptible and drug-resistant Mycobacterium tuberculosis strains in the submicromolar range. Furthermore, the most active compounds had no apparent toxicity to mammalian cells, and they showed intracellular activities similar to those of isoniazid and rifampin in a macrophage model of Mtb infection. Use of the checkerboard method to investigate the association profiles of lead compounds with first- and second-line antituberculosis drugs showed that 2-(quinolin-4-yloxy)acetamides have a synergistic effect with rifampin. Ultimately, the good permeability, moderate rates of metabolism and low risk of drug-drug interactions displayed by some of the synthesized compounds indicate that 2-(quinolin-4-yloxy)acetamides may yield candidates to use in the development of novel alternative therapeutics for tuberculosis treatment.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/química , Acetamidas/síntese química , Acetamidas/metabolismo , Animais , Antituberculosos/síntese química , Antituberculosos/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Relação Estrutura-Atividade
11.
ACS Med Chem Lett ; 7(3): 235-9, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26985307

RESUMO

2-(Quinolin-4-yloxy)acetamides have been described as potent in vitro inhibitors of Mycobacterium tuberculosis growth. Herein, additional chemical modifications of lead compounds were carried out, yielding highly potent antitubercular agents with minimum inhibitory concentration (MIC) values as low as 0.05 µM. Further, the synthesized compounds were active against drug-resistant strains and were devoid of apparent toxicity to Vero and HaCat cells (IC50s ≥ 20 µM). In addition, the 2-(quinolin-4-yloxy)acetamides showed intracellular activity against the bacilli in infected macrophages with action similar to rifampin, low risk of drug-drug interactions, and no sign of cardiac toxicity in zebrafish (Danio rerio) at 1 and 5 µM. Therefore, these data indicate that this class of compounds may furnish candidates for future development to, hopefully, provide drug alternatives for tuberculosis treatment.

12.
Biochem Biophys Rep ; 4: 277-282, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124214

RESUMO

Guanosine monophosphate synthetase (GMPS), encoded by guaA gene, is a key enzyme for guanine nucleotide biosynthesis in Mycobacterium tuberculosis. The guaA gene from several bacterial pathogens has been shown to be involved in virulence; however, no information about the physiological effect of direct guaA deletion in M. tuberculosis has been described so far. Here, we demonstrated that the guaA gene is essential for M. tuberculosis H37Rv growth. The lethal phenotype of guaA gene disruption was avoided by insertion of a copy of the ortholog gene from Mycobacterium smegmatis, indicating that this GMPS protein is functional in M. tuberculosis. Protein validation of the guaA essentiality observed by PCR was approached by shotgun proteomic analysis. A quantitative method was performed to evaluate protein expression levels, and to check the origin of common and unique peptides from M. tuberculosis and M. smegmatis GMPS proteins. These results validate GMPS as a molecular target for drug design against M. tuberculosis, and GMPS inhibitors might prove to be useful for future development of new drugs to treat human tuberculosis.

13.
Eur J Med Chem ; 90: 436-47, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25461892

RESUMO

The Mycobacterium tuberculosis NADH-dependent enoyl-acyl carrier protein reductase (MtInhA) catalyzes hydride transfer to long-chain enoyl thioester substrates. MtInhA is a member of the mycobacterial type II dissociated fatty acid biosynthesis system, and is the bona fide target for isoniazid, the most prescribed drug for tuberculosis treatment. Here, a series of piperazine derivatives was synthesized and screened as MtInhA inhibitors, which resulted in the identification of compounds with IC50 values in the submicromolar range. A structure-activity relationship (SAR) evaluation indicated the importance of the chemical environment surrounding the carbonyl group for inhibition. In addition, the structure of one selected compound was supported by crystallographic studies, and experimental geometrical values were compared with semi-empirical quantum chemical calculations. Furthermore, the mode of inhibition and inhibitory dissociation constants were determined for the nine most active compounds. These findings suggest that these 9H-fluoren-9-yl-piperazine-containing compounds interact with MtInhA at the enoyl thioester (2-trans-dodecenoyl-CoA) substrate binding site.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Piperazinas/farmacologia , Relação Dose-Resposta a Droga , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cinética , Modelos Moleculares , Estrutura Molecular , Piperazina , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade
14.
Tuberculosis (Edinb) ; 94(4): 421-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863654

RESUMO

Diagnostic methods of TB, nowadays, are prone to delay in diagnosis, increased false negative results and are not sensitive to many forms of paucibacillary disease. The aims of this study were to implement a quantitative nucleic acid-based diagnostic test for paucibacillary tuberculosis, enabling the identification and quantification of viable Mycobacterium tuberculosis bacilli by quantitative Real-Time PCR (qRT-PCR). The intergenic region of the single-copy inhA-mabA gene was chosen as the target region for design of primers and probes conjugated with fluorophores. The construction of synthetic DNA flanking the target region served as standards for absolute quantification of nucleic acids. Using the intercaling dye, propidium monoazide, we were able to discriminate between viable and dead cells of M. tuberculosis. The diagnosis method showed a broad sensitivity (96.1%) when only compared to samples of smear-positive sputum and ROC analyses shows that our approach performed well and yielded a specificity of 84.6% and a sensitivity of 84.6% when compared to M. tuberculosis colony-forming units counting.


Assuntos
Azidas/farmacologia , Mycobacterium tuberculosis/isolamento & purificação , Propídio/análogos & derivados , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Marcadores de Afinidade , Azidas/administração & dosagem , Contagem de Colônia Microbiana , Corantes/administração & dosagem , Corantes/farmacologia , DNA Bacteriano/análise , DNA Intergênico/genética , Relação Dose-Resposta a Droga , Humanos , Viabilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Propídio/administração & dosagem , Propídio/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
15.
PLoS One ; 8(2): e56445, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424660

RESUMO

Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5'-monophosphate (UMP) and pyrophosphate (PP(i)). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PP(i) product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis.


Assuntos
Mycobacterium tuberculosis/enzimologia , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/isolamento & purificação , Reação em Cadeia da Polimerase , Análise de Sequência , Especificidade por Substrato
16.
Mem. Inst. Oswaldo Cruz ; 112(3): 203-208, Mar. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-841772

RESUMO

BACKGROUND Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis. The better understanding of important metabolic pathways from M. tuberculosis can contribute to the development of novel therapeutic and prophylactic strategies to combat TB. Nucleoside hydrolase (MtIAGU-NH), encoded by iunH gene (Rv3393), is an enzyme from purine salvage pathway in M. tuberculosis. MtIAGU-NH accepts inosine, adenosine, guanosine, and uridine as substrates, which may point to a pivotal metabolic role. OBJECTIVES Our aim was to construct a M. tuberculosis knockout strain for iunH gene, to evaluate in vitro growth and the effect of iunH deletion in M. tuberculosis in non-activated and activated macrophages models of infection. METHODS A M. tuberculosis knockout strain for iunH gene was obtained by allelic replacement, using pPR27xylE plasmid. The complemented strain was constructed by the transformation of the knockout strain with pNIP40::iunH. MtIAGU-NH expression was analysed by Western blot and LC-MS/MS. In vitro growth was evaluated in Sauton’s medium. Bacterial load of non-activated and interferon-γ activated RAW 264.7 cells infected with knockout strain was compared with wild-type and complemented strains. FINDINGS Western blot and LC-MS/MS validated iunH deletion at protein level. The iunH knockout led to a delay in M. tuberculosis growth kinetics in Sauton’s medium during log phase, but did not affect bases and nucleosides pool in vitro. No significant difference in bacterial load of knockout strain was observed when compared with both wild-type and complemented strains after infection of non-activated and interferon-γ activated RAW 264.7 cells. MAIN CONCLUSION The disruption of iunH gene does not influence M. tuberculosis growth in both non-activated and activated RAW 264.7 cells, which show that iunH gene is not important for macrophage invasion and virulence. Our results indicated that MtIAGU-NH is not a target for drug development.


Assuntos
Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , N-Glicosil Hidrolases/genética , Técnicas de Inativação de Genes , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA