Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 173(7): 1678-1691.e16, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754818

RESUMO

Meiotic double-strand breaks (DSBs) are generated and repaired in a highly regulated manner to ensure formation of crossovers (COs) while also enabling efficient non-CO repair to restore genome integrity. We use structured-illumination microscopy to investigate the dynamic architecture of DSB repair complexes at meiotic recombination sites in relationship to the synaptonemal complex (SC). DSBs resected at both ends are converted into inter-homolog repair intermediates harboring two populations of BLM helicase and RPA, flanking a single population of MutSγ. These intermediates accumulate until late pachytene, when repair proteins disappear from non-CO sites and CO-designated sites become enveloped by SC-central region proteins, acquire a second MutSγ population, and lose RPA. These and other data suggest that the SC may protect CO intermediates from being dismantled inappropriately and promote CO maturation by generating a transient CO-specific repair compartment, thereby enabling differential timing and outcome of repair at CO and non-CO sites.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reparo do DNA , Meiose , Recombinação Genética/genética , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Imageamento Tridimensional , Microscopia , Prófase , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Complexo Sinaptonêmico/química
2.
Cell ; 149(1): 75-87, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464324

RESUMO

Crossovers (COs) between homologous chromosomes ensure their faithful segregation during meiosis. We identify C. elegans COSA-1, a cyclin-related protein conserved in metazoa, as a key component required to convert meiotic double-strand breaks (DSBs) into COs. During late meiotic prophase, COSA-1 localizes to foci that correspond to the single CO site on each homolog pair and indicate sites of eventual concentration of other conserved CO proteins. Chromosomes gain and lose competence to load CO proteins during meiotic progression, with competence to load COSA-1 requiring prior licensing. Our data further suggest a self-reinforcing mechanism maintaining CO designation. Modeling of a nonlinear dose-response relationship between IR-induced DSBs and COSA-1 foci reveals efficient conversion of DSBs into COs when DSBs are limiting and a robust capacity to limit cytologically differentiated CO sites when DSBs are in excess. COSA-1 foci serve as a unique live cell readout for investigating CO formation and CO interference.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Troca Genética , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromossomos/metabolismo , Ciclinas/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Mutação
3.
Nucleic Acids Res ; 51(17): 9183-9202, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548405

RESUMO

RAD54 family DNA translocases partner with RAD51 recombinases to ensure stable genome inheritance, exhibiting biochemical activities both in promoting recombinase removal and in stabilizing recombinase association with DNA. Understanding how such disparate activities of RAD54 paralogs align with their biological roles is an ongoing challenge. Here we investigate the in vivo functions of Caenorhabditis elegans RAD54 paralogs RAD-54.L and RAD-54.B during meiotic prophase, revealing distinct contributions to the dynamics of RAD-51 association with DNA and to the progression of meiotic double-strand break repair (DSBR). While RAD-54.L is essential for RAD-51 removal from meiotic DSBR sites to enable recombination progression, RAD-54.B is largely dispensable for meiotic DSBR. However, RAD-54.B is required to prevent hyperaccumulation of RAD-51 on unbroken DNA during the meiotic sub-stage when DSBs and early recombination intermediates form. Moreover, DSB-independent hyperaccumulation of RAD-51 foci in the absence of RAD-54.B is RAD-54.L-dependent, revealing a hidden activity of RAD-54.L in promoting promiscuous RAD-51 association that is antagonized by RAD-54.B. We propose a model wherein a division of labor among RAD-54 paralogs allows germ cells to ramp up their capacity for efficient homologous recombination that is crucial to successful meiosis while counteracting potentially deleterious effects of unproductive RAD-51 association with unbroken DNA.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , DNA Helicases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , DNA , Reparo do DNA , Células Germinativas/metabolismo , Meiose , Prófase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , DNA Helicases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(21): e2117865119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576467

RESUMO

Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover­specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover­promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2­mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover­promoting complexes.


Assuntos
Proteínas de Caenorhabditis elegans , Quinase 2 Dependente de Ciclina , Proteínas de Ligação a DNA , Meiose , Complexo Sinaptonêmico , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Troca Genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389685

RESUMO

Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Quebras de DNA de Cadeia Dupla , Meiose/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Engenharia Genética , Genoma , Oócitos/efeitos da radiação
6.
PLoS Biol ; 18(8): e3000817, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813728

RESUMO

During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.


Assuntos
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Cromossomos/ultraestrutura , Meiose , Complexo Sinaptonêmico/ultraestrutura , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Análise Citogenética , Hibridização in Situ Fluorescente , Fase S/genética , Complexo Sinaptonêmico/metabolismo , Coesinas
7.
Cell ; 135(2): 213-5, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957197

RESUMO

Success of homologous recombination-based DNA repair depends not only on recombinases, which promote invasion of the homologous DNA duplex that serves as a template for repair, but also on antirecombinases, which dismantle recombination intermediates to allow completion of repair. In this issue, Barber et al. (2008) identify a previously elusive antirecombinase activity important for maintaining genome stability in animals.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Recombinação Genética , Animais , Dano ao DNA , Humanos
8.
Proc Natl Acad Sci U S A ; 115(19): E4443-E4452, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686104

RESUMO

Faithful inheritance of genetic information through sexual reproduction relies on the formation of crossovers between homologous chromosomes during meiosis, which, in turn, relies on the formation and repair of numerous double-strand breaks (DSBs). As DSBs pose a potential threat to the genome, mechanisms that ensure timely and error-free DSB repair are crucial for successful meiosis. Here, we identify NBS-1, the Caenorhabditis elegans ortholog of the NBS1 (mutated in Nijmegen Breakage Syndrome) subunit of the conserved MRE11-RAD50-NBS1/Xrs2 (MRN) complex, as a key mediator of DSB repair via homologous recombination (HR) during meiosis. Loss of nbs-1 leads to severely reduced loading of recombinase RAD-51, ssDNA binding protein RPA, and pro-crossover factor COSA-1 during meiotic prophase progression; aggregated and fragmented chromosomes at the end of meiotic prophase; and 100% progeny lethality. These phenotypes reflect a role for NBS-1 in processing of meiotic DSBs for HR that is shared with its interacting partners MRE-11-RAD-50 and COM-1 (ortholog of Com1/Sae2/CtIP). Unexpectedly, in contrast to MRE-11 and RAD-50, NBS-1 is not required for meiotic DSB formation. Meiotic defects of the nbs-1 mutant are partially suppressed by abrogation of the nonhomologous end-joining (NHEJ) pathway, indicating a role for NBS-1 in antagonizing NHEJ during meiosis. Our data further reveal that NBS-1 and COM-1 play distinct roles in promoting HR and antagonizing NHEJ. We propose a model in which different components of the MRN-C complex work together to couple meiotic DSB formation with efficient and timely engagement of HR, thereby ensuring crossover formation and restoration of genome integrity before the meiotic divisions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Embrião não Mamífero/metabolismo , Recombinação Homóloga , Meiose , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia
9.
PLoS Genet ; 13(3): e1006670, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28339470

RESUMO

During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.


Assuntos
Caenorhabditis elegans/genética , Meiose/genética , Recombinação Genética , Complexo Sinaptonêmico/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Troca Genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Cinética , Prófase Meiótica I/genética , Microscopia Confocal , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Sinaptonêmico/metabolismo
10.
PLoS Biol ; 14(3): e1002412, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27011106

RESUMO

During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Troca Genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Endonucleases/metabolismo , Mutação , Estágio Paquíteno
11.
Nature ; 502(7473): 703-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24107990

RESUMO

Crossover recombination events between homologous chromosomes are required to form chiasmata, temporary connections between homologues that ensure their proper segregation at meiosis I. Despite this requirement for crossovers and an excess of the double-strand DNA breaks that are the initiating events for meiotic recombination, most organisms make very few crossovers per chromosome pair. Moreover, crossovers tend to inhibit the formation of other crossovers nearby on the same chromosome pair, a poorly understood phenomenon known as crossover interference. Here we show that the synaptonemal complex, a meiosis-specific structure that assembles between aligned homologous chromosomes, both constrains and is altered by crossover recombination events. Using a cytological marker of crossover sites in Caenorhabditis elegans, we show that partial depletion of the synaptonemal complex central region proteins attenuates crossover interference, increasing crossovers and reducing the effective distance over which interference operates, indicating that synaptonemal complex proteins limit crossovers. Moreover, we show that crossovers are associated with a local 0.4-0.5-micrometre increase in chromosome axis length. We propose that meiotic crossover regulation operates as a self-limiting system in which meiotic chromosome structures establish an environment that promotes crossover formation, which in turn alters chromosome structure to inhibit other crossovers at additional sites.


Assuntos
Caenorhabditis elegans/genética , Cromossomos/genética , Cromossomos/metabolismo , Troca Genética , Meiose , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Pareamento Cromossômico , Segregação de Cromossomos , Cromossomos/química , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Meiose/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Complexo Sinaptonêmico/metabolismo
12.
Genes Dev ; 24(3): 219-28, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20123904

RESUMO

Organisms that reproduce sexually must reduce their chromosome number by half during meiosis to generate haploid gametes. To achieve this reduction in ploidy, organisms must devise strategies to couple sister chromatids so that they stay together during the first meiotic division (when homologous chromosomes separate) and then segregate away from one another during the second division. Here we review recent findings that shed light on how Caenorhabditis elegans, an organism with holocentric chromosomes, deals with these challenges of meiosis by differentiating distinct chromosomal subdomains and remodeling chromosome structure during prophase. Furthermore, we discuss how features of chromosome organization established during prophase affect later chromosome behavior during the meiotic divisions. Finally, we illustrate how analysis of holocentric meiosis can inform our thinking about mechanisms that operate on monocentric chromosomes.


Assuntos
Cromossomos/genética , Meiose/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromátides/metabolismo , Pareamento Cromossômico , Modelos Biológicos
13.
BMC Genomics ; 17: 274, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036078

RESUMO

BACKGROUND: Identification of locus-locus contacts at the chromatin level provides a valuable foundation for understanding of nuclear architecture and function and a valuable tool for inferring long-range linkage relationships. As one approach to this, chromatin conformation capture-based techniques allow creation of genome spatial organization maps. While such approaches have been available for some time, methodological advances will be of considerable use in minimizing both time and input material required for successful application. RESULTS: Here we report a modified tethered conformation capture protocol that utilizes a series of rapid and efficient molecular manipulations. We applied the method to Caenorhabditis elegans, obtaining chromatin interaction maps that provide a sequence-anchored delineation of salient aspects of Caenorhabditis elegans chromosome structure, demonstrating a high level of consistency in overall chromosome organization between biological samples collected under different conditions. In addition to the application of the method to defining nuclear architecture, we found the resulting chromatin interaction maps to be of sufficient resolution and sensitivity to enable detection of large-scale structural variants such as inversions or translocations. CONCLUSION: Our streamlined protocol provides an accelerated, robust, and broadly applicable means of generating chromatin spatial organization maps and detecting genome rearrangements without a need for cellular or chromatin fractionation.


Assuntos
Caenorhabditis elegans/genética , Cromatina/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Animais
14.
Proc Natl Acad Sci U S A ; 110(10): E898-907, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23401519

RESUMO

In many species where oocytes lack centrosomes, sperm contribute both genetic material and centriole(s) to the zygote. Correct centriole organization during male meiosis is critical to guarantee a normal bipolar mitotic spindle in the zygote. During Caenorhabditis elegans male meiosis, centrioles normally undergo two rounds of duplication, resulting in haploid sperm each containing a single tightly engaged centriole pair. Here we identify an unanticipated role for C. elegans HORMA (Hop1/Rev7/Mad2) domain proteins HTP-1/2 and HIM-3 in regulating centriole disengagement during spermatocyte meiosis. In him-3 and htp-1 htp-2 mutants, centrioles separate inappropriately during meiosis II, resulting in spermatids with disengaged centrioles. Moreover, extra centrosomes are detected in a subset of zygotes. Together, these data implicate HIM-3 and HTP-1/2 in preventing centriole disengagement during meiosis II. We showed previously that HTP-1/2 prevents premature loss of sister chromatid cohesion during the meiotic divisions by inhibiting removal of meiotic cohesin complexes containing the REC-8 subunit. Worms lacking REC-8, or expressing a mutant separase protein with elevated local concentration at centrosomes and in sperm, likewise exhibit inappropriate centriole separation during spermatocyte meiosis. These observations are consistent with HIM-3 and HTP-1/2 preventing centriole disengagement by inhibiting separase-dependent cohesin removal. Our data suggest that the same specialized meiotic mechanisms that function to prevent premature release of sister chromatid cohesion during meiosis I in C. elegans also function to inhibit centriole separation at meiosis II, thereby ensuring that the zygote inherits the appropriate complement of chromosomes and centrioles.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Espermatócitos/citologia , Espermatócitos/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Centríolos/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Feminino , Genes de Helmintos , Masculino , Meiose/genética , Meiose/fisiologia , Modelos Biológicos , Mutação , Separase , Espermatogênese/genética , Espermatogênese/fisiologia , Coesinas
15.
PLoS Genet ; 9(12): e1003963, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339786

RESUMO

Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1:1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is "wired" to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that "mask" defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis.


Assuntos
Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Meiose/genética , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Cariótipo , Recombinação Genética , Complexo Sinaptonêmico/genética , Cromossomo X/genética
16.
PLoS Genet ; 9(8): e1003679, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990794

RESUMO

Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Meiose/genética , Animais , Caenorhabditis elegans , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética , Mutação
17.
PLoS Genet ; 9(5): e1003497, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23671424

RESUMO

Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans , Pareamento Cromossômico/genética , Cromossomos/genética , Proteínas Mitocondriais/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Núcleo Celular , Meiose , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Estrutura Terciária de Proteína , Complexo Sinaptonêmico/genética
18.
PLoS Genet ; 9(8): e1003674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950729

RESUMO

For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Meiose/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Redes Reguladoras de Genes , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
PLoS Genet ; 8(10): e1002993, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071451

RESUMO

the synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.


Assuntos
Prófase/fisiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Transporte Biológico , Pontos de Checagem do Ciclo Celular , Centrômero/metabolismo , Pareamento Cromossômico , Cromossomos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo
20.
PLoS Genet ; 8(8): e1002880, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912597

RESUMO

During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pareamento Cromossômico/genética , Proteínas Nucleares/genética , Precursores de Proteínas/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Microtúbulos , Mutação , Membrana Nuclear , Proteínas Nucleares/metabolismo , Precursores de Proteínas/genética , Complexo Sinaptonêmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA