RESUMO
Sickle cell disease (SCD) is an hemoglobinopathy resulting in the production of an abnormal Hb (HbS) which can polymerize in deoxygenated conditions, leading to the sickling of red blood cells (RBC). These alterations can decrease the oxygen-carrying capacity leading to impaired function and energetics of skeletal muscle. Any strategy which could reverse the corresponding defects could be of interest. In SCD, endurance training is known to improve multiples muscle properties which restores patient's exercise capacity but present reduced effects in anemic patients. Hydroxyurea (HU) can increase fetal hemoglobin production which can reduce anemia in patients. The present study was conducted to determine whether HU can improve the effects of endurance training to improve muscle function and energetics. Twenty SCD Townes mice have been trained for 8 weeks with (n = 11) or without (n = 9) HU. SCD mice muscle function and energetics were analyzed during a standardized rest-exercise-recovery protocol, using Phosphorus-31 Magnetic resonance spectroscopy (31P-MRS) and transcutaneous stimulation. The combination of training and HU specifically decreased fatigue index and PCr consumption while muscle oxidative capacity was improved. These results illustrate the potential synergistic effects of endurance training and HU on muscle function and energetics in sickle cell disease.
Assuntos
Anemia Falciforme , Metabolismo Energético , Hidroxiureia , Músculo Esquelético , Condicionamento Físico Animal , Animais , Anemia Falciforme/tratamento farmacológico , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Treino Aeróbico , Modelos Animais de Doenças , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêuticoRESUMO
Citrulline malate (CM) has been shown to improve muscle performance in healthy participants during a single exercise session. Yet, within the framework of exercises repeated at close time interval, the consequences of CM ingestion on mechanical performance are controversial and the bioenergetics side remains undocumented. The aim of this double-blind placebo-controlled study was to evaluate in vivo the effect of short-term (7 doses in 48 h) oral administration of CM upon gastrocnemius muscle function and bioenergetics using non-invasive multimodal NMR techniques in healthy rats. The experimental protocol consisted of two 6-min bouts of fatiguing exercise spaced by an 8-min recovery period. CM treatment did not affect the basal bioenergetics status and increased the half-fatigue time during the first exercise bout. With exercise repetition, it prevented PCr cost alteration and decreased both the glycolytic ATP production and the contractile ATP cost in working muscle, but these changes were not associated to any improvement in mechanical performance. In addition, CM did not influence the replenishment of high-energy phosphorylated compounds during the post-exercise recovery periods. Therefore, short-term CM administration enhances muscle bioenergetics throughout fatiguing bouts of exercise repeated at close time interval but this enhancement does not benefit to mechanical performance.
Assuntos
Citrulina , Fadiga Muscular , Animais , Ratos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Citrulina/farmacologia , Citrulina/metabolismo , Suplementos Nutricionais , Metabolismo Energético , Fadiga , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologiaRESUMO
NEW FINDINGS: What is the central question of this study? The aim of this study was to evaluate the potential beneficial effects of endurance training during an ischaemia-reperfusion protocol in a mouse model of sickle cell disease (SCD). What is the main finding and its importance? Endurance training did not reverse the metabolic defects induced by a simulated vaso-occlusive crisis in SCD mice, with regard to intramuscular acidosis, mitochondrial dysfunction or anatomical properties. Our results suggest that endurance training would reduce the number of vaso-occlusive crises rather than the complications related to vaso-occlusive crises. ABSTRACT: The aim of this study was to investigate whether endurance training could limit the abnormalities described in a mouse model of sickle cell disease (SCD) in response to an ischaemia-reperfusion (I/R) protocol. Ten sedentary (HbSS-SED) and nine endurance-trained (HbSS-END) SCD mice were submitted to a standardized protocol of I/R of the leg, during which ATP, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured using magnetic resonance spectroscopy. Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured. Although the time course of protons accumulation was slightly different between trained and sedentary mice (P < 0.05), the extent of acidosis was similar at the end of the ischaemic period. The initial rate of phosphocreatine resynthesis measured at blood flow restoration, illustrating mitochondrial function, was not altered in trained mice compared with sedentary mice. Although several oxidative stress markers were not different between groups (P > 0.05), the I/R-related increase of uric acid concentration observed in sedentary SCD mice (P < 0.05) was not present in the trained group. The spleen weight, generally used as a marker of the severity of the disease, was not different between groups (P > 0.05). In conclusion, endurance training did not limit the metabolic consequences of an I/R protocol in skeletal muscle of SCD mice, suggesting that the reduction in the severity of the disease previously demonstrated in the basal state would be attributable to a reduction of the occurrence of vaso-occlusive crises rather than a decrease of the deleterious effects of vaso-occlusive crises.
Assuntos
Anemia Falciforme/metabolismo , Anemia Falciforme/fisiopatologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Acidose/metabolismo , Acidose/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Treino Aeróbico/métodos , Camundongos , Estresse Oxidativo/fisiologia , Fosfocreatina/metabolismoRESUMO
Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. ©RSNA, 2018 Online supplemental material is available for this article.
Assuntos
Imagem de Tensor de Difusão , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Caracteres Sexuais , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Adulto JovemRESUMO
Sickle cell disease (SCD) mice (Townes model of SCD) presented exacerbated exercise-induced acidosis and fatigability as compared to control animals. We hypothesize that endurance training could represent a valuable approach to reverse these muscle defects. Endurance-trained HbAA (HbAA-END, n=10), HbAS (HbAS-END, n=11) and HbSS (HbSS-END, n=8) mice were compared to their sedentary counterparts (10 HbAA-SED, 10 HbAS-SED and 9 HbSS-SED mice) during two rest - exercise - recovery protocols during which muscle energetics and function were measured. In vitro analyses of some proteins involved in muscle energetics, pH regulation and oxidative stress were also performed. Exercise-induced acidosis was lower in HbSS-END mice as compared to their sedentary counterparts during both moderate (p<0.001) and intense (p<0.1) protocols. The total force production measured during both protocols was higher in trained mice compared to sedentary animals. In vitro analyses revealed that enolase/citrate synthase ratio was reduced in HbSS-END (p<0.001) and HbAS-END (p<0.01) mice compared to their sedentary counterparts. In addition, malondialdehyde concentration was reduced in trained mice (p<0.05). In conclusion, endurance training would reverse the more pronounced exercise-induced acidosis, reduce oxidative stress and ameliorate some of the muscle function parameters in SCD mice.
Assuntos
Acidose/reabilitação , Anemia Falciforme/reabilitação , Treino Aeróbico , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/métodos , Acidose/etiologia , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/fisiopatologia , Animais , Modelos Animais de Doenças , Hemoglobinas/genética , Humanos , Camundongos , Camundongos Transgênicos , Fadiga Muscular/fisiologia , Estresse Oxidativo/fisiologia , Resultado do TratamentoRESUMO
Sickle cell disease (SCD) is characterized by painful vaso-occlusive crisis. While there are several metabolic abnormalities potentially associated with muscular ischemia-reperfusion cycles that could be harmful in the context of SCD, the metabolic consequences of such events are still unknown. Ten controls (HbAA), thirteen heterozygous (HbAS), and ten homozygous (HbSS) SCD mice were submitted to a standardized protocol of rest-ischemia-reperfusion of the left leg during which adenosine triphosphate, phosphocreatine, and inorganic phosphate concentrations as well as intramuscular pH were measured using phosphorous magnetic resonance spectroscopy (MRS). Forty-eight hours later, skeletal muscles were harvested. Oxidative stress markers were then measured on the tibialis anterior. At the end of the ischemic period, HbSS mice had a lower pH value as compared with the HbAA and HbAS groups (P<0.01). During the reperfusion period, the initial rate of phosphocreatine resynthesis was lower in HbSS mice as compared with HbAA (P<0.05) and HbAS (P<0.01) animals. No significant difference among groups was observed regarding oxidative stress markers. HbSS mice displayed a higher intramuscular acidosis during the ischemic period while their mitochondrial function was impaired as compared with their HbAA and HbAS counterparts. These metabolic abnormalities could worsen the complications related to the pathology of SCD.
Assuntos
Anemia Falciforme/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Traumatismo por Reperfusão/metabolismo , Doença Aguda , Trifosfato de Adenosina/metabolismo , Anemia Falciforme/genética , Animais , Antioxidantes/metabolismo , Concentração de Íons de Hidrogênio , Isquemia/fisiopatologia , Espectroscopia de Ressonância Magnética , Camundongos , Músculo Esquelético/química , Estresse Oxidativo , Fosfocreatina/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Descanso , Fatores de TempoRESUMO
The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1+/- mice). Twenty-four MCT1+/- and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1+/- mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1+/- mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1+/- mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1+/- mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.
Assuntos
Anidrase Carbônica II/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/fisiologia , Simportadores/metabolismo , Animais , Peso Corporal , Anidrase Carbônica II/genética , Regulação Enzimológica da Expressão Gênica , Haplótipos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genéticaRESUMO
INTRODUCTION: Postnatal activin/myostatin type IIB receptor (ActRIIB) blockade increases skeletal muscle mass and strength but also increases muscle fatigability and impairs oxidative metabolism. The objective of this study was to determine in vivo whether this increased fatigability is due to energy supply limitation. METHODS: The impact of 8-week ActRIIB blockade with soluble receptor (sActRIIB-Fc) on muscle function and adenosine triphosphate (ATP) fluxes was investigated noninvasively by using multimodal magnetic resonance and indirect calorimetry measurements in wild-type mice. RESULTS: Activin/myostatin type IIB receptor blockade reduced (-41%) the muscle apparent mitochondrial capacity and increased (+11%) the basal body energy expenditure. During a fatiguing exercise, ActRIIB blockade decreased both oxidative ATP production rate (-32%) and fatigue resistance (-36%), but these changes affected neither the total ATP production rate nor the contractile ATP cost. DISCUSSION: These findings demonstrate that the increased fatigability after ActRIIB blockade is not due to limitation in energy supply and/or disturbance in contractile ATP cost. Muscle Nerve 58:834-842, 2018.
Assuntos
Receptores de Activinas Tipo II/metabolismo , Trifosfato de Adenosina/metabolismo , Músculo Esquelético/fisiologia , Receptores de Activinas Tipo II/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Calorimetria , Creatina/metabolismo , Metabolismo Energético , Feminino , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Estatísticas não ParamétricasRESUMO
Skeletal muscle function has been scarcely investigated in sickle cell disease (SCD) so that the corresponding impact of sickle hemoglobin is still a matter of debate. The purpose of this study was to investigate muscle force production and fatigability in SCD and to identify whether exercise intensity could have a modulatory effect. Ten homozygous sickle cell (HbSS), ten control (HbAA) and ten heterozygous (HbAS) mice were submitted to two stimulation protocols (moderate and intense) to assess force production and fatigability. We showed that specific maximal tetanic force was lower in HbSS mice as compared to other groups. At the onset of the stimulation period, peak force was reduced in HbSS and HbAS mice as compared to HbAA mice. Contrary to the moderate protocol, the intense stimulation protocol was associated with a larger decrease in peak force and rate of force development in HbSS mice as compared to HbAA and HbAS mice. These findings provide in vivo evidence of impaired muscle force production and resistance to fatigue in SCD. These changes are independent of muscle mass. Moreover, SCD is associated with muscle fatigability when exercise intensity is high.
Assuntos
Anemia Falciforme/fisiopatologia , Fadiga/fisiopatologia , Força Muscular , Músculo Esquelético/fisiopatologia , Animais , Camundongos , Fadiga Muscular , Condicionamento Físico Animal , Estimulação FísicaRESUMO
PURPOSE: To assess and validate a technique for transverse relaxation time (T2 ) measurements of resting and recovering skeletal muscle following exercise with a high temporal resolution and large volume coverage using segmented spin-echo echo-planar imaging (sSE-EPI). MATERIALS AND METHODS: Experiments were performed on a 3T magnetic resonance imaging (MRI) scanner using a multislice sSE-EPI technique applied at different echo times (TEs). T2 measurements were first validated in vitro in calibrated T2 phantoms (range: 25-152 ms) by comparing sSE-EPI, standard spin-echo (SE), and multislice multiecho (MSME) techniques (using a fitting procedure or a 2-TEs calculation). In vivo measurements of resting T2 quadriceps femoris (QF) muscle were performed with both sSE-EPI and MSME sequences. Finally, sSE-EPI was used to quantify T2 changes in recovering muscle after an exercise. RESULTS: T2 values measured in vitro with sSE-EPI were similar to those assessed with SE (P > 0.05). In vitro and in vivo T2 measurements obtained with sSE-EPI were independent of the T2 determination procedure (P > 0.05). In contrast, both in vitro and in vivo T2 values derived from MSME were significantly different when using 2-TEs calculation as compared to the fitting procedure (P < 0.05). sSE-EPI allowed the detection of increased T2 values in the QF muscle immediately after exercise (+14 ± 9%), while lower T2 values were recorded less than 2 min afterwards (P < 0.05). CONCLUSION: sSE-EPI sequence is a relevant method to monitor exercise-induced T2 changes of skeletal muscles over large volume coverage and to detect abnormal patterns of muscle activation. LEVEL OF EVIDENCE: 1 J. Magn. Reson. Imaging 2017;45:356-368.
Assuntos
Imagem Ecoplanar/métodos , Exercício Físico/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Contração Muscular/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Recuperação de Função Fisiológica/fisiologia , Adulto , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Campos Magnéticos , Masculino , Tamanho do Órgão/fisiologia , Músculo Quadríceps/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Postnatal blockade of the activin type IIB receptor (ActRIIB) represents a promising therapeutic strategy for counteracting dystrophic muscle wasting. However, its impact on muscle function and bioenergetics remains poorly documented in physiologic conditions. We have investigated totally noninvasively the effect of 8-wk administration of either soluble ActRIIB signaling inhibitor (sActRIIB-Fc) or vehicle PBS (control) on gastrocnemius muscle force-generating capacity, energy metabolism, and anatomy in dystrophic mdx mice using magnetic resonance (MR) imaging and dynamic [31P]-MR spectroscopy ([31P]-MRS) in vivo ActRIIB inhibition increased muscle volume (+33%) without changing fiber-type distribution, and increased basal animal oxygen consumption (+22%) and energy expenditure (+23%). During an in vivo standardized fatiguing exercise, maximum and total absolute contractile forces were larger (+40 and 24%, respectively) in sActRIIB-Fc treated animals, whereas specific force-generating capacity and fatigue resistance remained unaffected. Furthermore, sActRIIB-Fc administration did not alter metabolic fluxes, ATP homeostasis, or contractile efficiency during the fatiguing bout of exercise, although it dramatically reduced the intrinsic mitochondrial capacity for producing ATP. Overall, sActRIIB-Fc treatment increased muscle mass and strength without altering the fundamental weakness characteristic of dystrophic mdx muscle. These data support the clinical interest of ActRIIB blockade for reversing dystrophic muscle wasting.-Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., Giannesini, B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.
Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Metabolismo Energético/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/patologia , Animais , Peso Corporal/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos mdx , Modelos Animais , Condicionamento Físico Animal/métodosRESUMO
Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.
Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Proteínas Recombinantes de Fusão/farmacologia , Animais , Glicólise , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Mitocôndrias Musculares/metabolismo , Contração Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Isótopos de FósforoRESUMO
Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (VÌo2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). VÌo2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P < 0.05). As a result, the ratio of the rate of oxidative ATP synthesis from the quadriceps to VÌo2p was lower in hyperoxia than normoxia but did not reach statistical significance (16 ± 3 mM/ml in normoxia and 12 ± 5 mM/ml in hyperoxia, P = 0.07). Together, these findings reveal dynamic and independent regulations of mitochondrial and contractile efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia.
Assuntos
Metabolismo Energético , Exercício Físico , Hiperóxia/fisiopatologia , Contração Isométrica , Pulmão/fisiopatologia , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Músculo Quadríceps/fisiopatologia , Trifosfato de Adenosina/metabolismo , Adulto , Ciclismo , Eletromiografia , Tolerância ao Exercício , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hiperóxia/metabolismo , Pulmão/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Fadiga Muscular , Força Muscular , Músculo Quadríceps/metabolismo , Fatores de TempoRESUMO
Capsiate is known to increase whole body oxygen consumption possibly via the activation of uncoupling processes, but its effect at the skeletal muscle level remains poorly documented and conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated in mice 2 h after a single intake of either vehicle (control) or purified capsiate (at 10 or 100 mg/kg body wt) through a multidisciplinary approach combining in vivo and in vitro measurements. Mechanical performance and energy pathway fluxes were assessed strictly noninvasively during a standardized electrostimulation-induced exercise, using an original device implementing 31-phosphorus magnetic resonance spectroscopy, and mitochondrial respiration was evaluated in isolated saponin-permeabilized fibers. Compared with control, both capsiate doses produced quantitatively similar effects at the energy metabolism level, including an about twofold decrease of the mitochondrial respiration sensitivity for ADP. Interestingly, they did not alter either oxidative phosphorylation or uncoupling protein 3 gene expression at rest. During 6 min of maximal repeated isometric contractions, both doses reduced the amount of ATP produced from glycolysis and oxidative phosphorylation but increased the relative contribution of oxidative phosphorylation to total energy turnover (+28 and +21% in the 10- and 100-mg groups, respectively). ATP cost of twitch force generation was further reduced in the 10- (-35%) and 100-mg (-45%) groups. Besides, the highest capsiate dose also increased the twitch force-generating capacity. These data present capsiate as a helpful candidate to enhance both muscle performance and oxidative phosphorylation during exercise, which could constitute a nutritional approach for improving health and preventing obesity and associated metabolic disorders.
Assuntos
Fenômenos Biomecânicos/efeitos dos fármacos , Capsaicina/análogos & derivados , Metabolismo Energético/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Capsaicina/administração & dosagem , Células Cultivadas , Estimulação Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologiaRESUMO
We have designed and constructed an experimental set-up allowing electrical stimulation of hindlimb mouse muscles and the corresponding force measurements at high-field (11.75T). We performed high-resolution multimodal MRI (including T2 -weighted imaging, angiography and diffusion) and analysed the corresponding MRI changes in response to a stimulation protocol. Mice were tested twice over a 1-week period to investigate the reliability of mechanical measurements and T2 changes associated with the stimulation protocol. Additionally, angiographic images were obtained before and immediately after the stimulation protocol. Finally, multislice diffusion imaging was performed before, during and immediately after the stimulation session. Apparent diffusion coefficient (ADC) maps were calculated on the basis of diffusion weighted images (DWI). Both force production and T2 values were highly reproducible as illustrated by the low coefficient of variation (<8%) and high intraclass correlation coefficient (≥0.75) values. Maximum intensity projection angiographic images clearly showed a strong vascular effect resulting from the stimulation protocol. Although a motion sensitive imaging sequence was used (echo planar imaging) and in spite of the strong muscle contractions, motion artifacts were minimal for DWI recorded under exercising conditions, thereby underlining the robustness of the measurements. Mean ADC values increased under exercising conditions and were higher during the recovery period as compared with the corresponding control values. The proposed experimental approach demonstrates accurate high-field multimodal MRI muscle investigations at a preclinical level which is of interest for monitoring the severity and/or the progression of neuromuscular diseases but also for assessing the efficacy of potential therapeutic interventions.
Assuntos
Ergometria/instrumentação , Membro Posterior/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Músculos/fisiologia , Animais , Fenômenos Biomecânicos , Calibragem , Imagem de Difusão por Ressonância Magnética , Contração Isométrica , Angiografia por Ressonância Magnética , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Reprodutibilidade dos TestesRESUMO
Although it is well established that the lack of myostatin (Mstn) promotes skeletal muscle hypertrophy, the corresponding changes regarding force generation have been studied mainly in vitro and remain conflicting. Furthermore, the metabolic underpinnings of these changes are very poorly documented. To clarify this issue, we have investigated strictly noninvasively in vivo the impact of the lack of Mstn on gastrocnemius muscle function and energetics in Mstn-targeted knockout (Mstn-/-) mice using ¹H-magnetic resonance (MR) imaging and ³¹P-MR spectroscopy during maximal repeated isometric contractions induced by transcutaneous electrostimulation. In Mstn-/- animals, although body weight, gastrocnemius muscle volume, and absolute force were larger (+38, +118, and +34%, respectively) compared with wild-type (Mstn+/+) mice, specific force (calculated from MR imaging measurements) was significantly lower (-36%), and resistance to fatigue was decreased. Besides, Mstn deficiency did not affect phosphorylated compound concentrations and intracellular pH at rest but caused a large increase in ATP cost of contraction (up to +206% compared with Mstn+/+) throughout the stimulation period. Further, Mstn deficiency limits the shift toward oxidative metabolism during muscle activity despite the fact that oxidative ATP synthesis capacity was not altered. Our data demonstrate in vivo that the absence of Mstn impairs both mechanical performance and energy cost of contraction in hypertrophic muscle. These findings must be kept in mind when considering Mstn as a potential therapeutic target for increasing muscle mass in patients suffering from muscle-wasting disorders.
Assuntos
Metabolismo Energético/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miostatina/genética , Miostatina/metabolismo , Condicionamento Físico Animal/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos/genética , Estimulação Elétrica , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologiaRESUMO
Hydroxyurea (HU) is commonly used as a treatment for patients with sickle cell disease (SCD) to enhance fetal hemoglobin production. This increased production is expected to reduce anemia (which depresses oxygen transport) and abnormal Hb content alleviating clinical symptoms such as vaso-occlusive crisis and acute chest syndrome. The effects of HU on skeletal muscle bioenergetics in vivo are still unknown. Due to the beneficial effects of HU upon oxygen delivery, improved skeletal muscle energetics and function in response to a HU treatment have been hypothesized. Muscle energetics and function were analyzed during a standardized rest-exercise-recovery protocol, using 31P-magnetic resonance spectroscopy in Townes SCD mice. Measurements were performed in three groups of mice: one group of 2-mo-old mice (SCD2m, n = 8), another one of 4-mo-old mice (SCD4m, n = 8), and a last group of 4-mo-old mice that have been treated from 2 mo of age with HU at 50 mg/kg/day (SCD4m-HU, n = 8). As compared with SCD2m mice, SCD4m mice were heavier and displayed a lower acidosis. As lower specific forces were developed by SCD4m compared with SCD2m, greater force-normalized phosphocreatine consumption and oxidative and nonoxidative costs of contraction were also reported. HU-treated mice (SCD4m-HU) displayed a significantly higher specific force production as compared with untreated mice (SCD4m), whereas muscle energetics was unchanged. Overall, our results support a beneficial effect of HU on muscle function.NEW & NOTEWORTHY Our results highlighted that force production decreases between 2 and 4 mo of age in SCD mice thereby indicating a decrease of muscle function during this period. Of interest, HU treatment seemed to blunt the observed age effect given that SCD4m-HU mice displayed a higher specific force production as compared with SCD4m mice. In that respect, HU treatment would help to maintain a higher capacity of force production during aging in SCD.
Assuntos
Anemia Falciforme , Hidroxiureia , Camundongos , Animais , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Modelos Animais de Doenças , Anemia Falciforme/tratamento farmacológico , Músculo Esquelético , OxigênioRESUMO
We present an investigation of tumor pH regulation, designed to support a new anticancer therapy concept that we had previously proposed. Our study uses a tumor model of ras-transformed hamster fibroblasts, CCL39, xenografted in the thighs of nude mice. We demonstrate, for the first time, that genetic modifications of specific mechanisms of proton production and/or proton transport result in distinct, reproducible changes in intracellular and extracellular tumor pH that can be detected and quantified noninvasively in vivo, simultaneously with determinations of tumor energetic status and necrosis in the same experiment. The CCL39 variants used were deficient in the sodium/proton exchanger, NHE-1, and/or in the monocarboxylate transporter, MCT4; further, variants were deficient in glycolysis or respiration. MCT4 expression markedly increased the gradient between intracellular and extracellular pH from 0.14 to 0.43 when compared to CCL39 wild-type tumors not expressing MCT4. The other genetic modifications studied produced smaller but significant increases in intracellular and decreases in extracellular pH. In general, increased pH gradients were paralleled by increased tumor growth performance and diminished necrotic regions, and 50% of the CCL39 variant expressing neither MCT4 nor NHE-1, but possessing full genetic capacity for glycolysis and oxidative phosphorylation, underwent regression before reaching a 1-cm diameter. Except for CCL39 wild-type tumors, no significant HIF-1α expression was detected. Our in vivo results support a multipronged approach to tumor treatment based on minimizing intracellular pH by targeting several proton production and proton transport processes, among which the very efficient MCT4 proton/lactate co-transport deserves particular attention.
Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Genes ras , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cricetinae , Glicólise/genética , Glicólise/fisiologia , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Troca Iônica , Transporte de Íons/genética , Transporte de Íons/fisiologia , Camundongos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Mutação/genética , Necrose/genética , Necrose/metabolismo , Fosforilação Oxidativa , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Prótons , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismoRESUMO
To better understand the mechanisms underlying the pulmonary O(2) uptake (V(O(2P))) slow component during high-intensity exercise, we used (31)P magnetic resonance spectroscopy, gas exchange, surface electromyography and near-infrared spectroscopy measurements to examine the potential relationship between the slow components of V(O(2P)) and phosphocreatine (PCr), muscle recruitment and tissue oxygenation in endurance-trained athletes and sedentary subjects. Specifically, six endurance-trained and seven sedentary subjects performed a dynamic high-intensity exercise protocol during 6 min at an exercise intensity corresponding to 35-40% of knee-extensor maximal voluntary contraction. The slow component of V(O(2P))(117 ± 60 ml min(-1), i.e. 20 ± 10% of the total response) was associated with a paradoxical PCr resynthesis in endurance-trained athletes (-0.90 ± 1.27 mm, i.e. -12 ± 16% of the total response). Meanwhile, oxygenated haemoglobin increased throughout the second part of exercise and was significantly higher at the end of exercise compared with the value at 120 s (P < 0.05), whereas the integrated EMG was not significantly changed throughout exercise. In sedentary subjects, a slow component was simultaneously observed for V(O(2P)) and [PCr] time-dependent changes (208 ± 14 ml min(-1), i.e. 38 ± 18% of the total V(O(2P))response, and 1.82 ± 1.39 mm, i.e. 16 ± 13% of the total [PCr] response), but the corresponding absolute or relative amplitudes were not correlated. The integrated EMG was significantly increased throughout exercise in sedentary subjects. Taken together, our results challenge the hypothesis of a mechanistic link between [PCr] and V(O(2P)) slow components and demonstrate that, as a result of a tighter metabolic control and increased O(2) availability, the [PCr] slow component can be minimized in endurance-trained athletes while the V(O(2P)) slow component occurs.
Assuntos
Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Fosfocreatina/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Joelho/fisiologia , Espectroscopia de Ressonância Magnética , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fosfocreatina/biossíntese , Resistência Física/fisiologia , Troca Gasosa Pulmonar/fisiologia , Comportamento Sedentário , Adulto JovemRESUMO
Hydroxyurea (HU) is a ribonucleotide reductase inhibitor most commonly used as a therapeutic agent in sickle cell disease (SCD) with the aim of reducing the risk of vaso-occlusion and improving oxygen transport to tissues. Previous studies suggest that HU may be even beneficial in mild anemia. However, the corresponding effects on skeletal muscle energetics and function have never been reported in such a mild anemia model. Seventeen mildly anemic HbAA Townes mice were subjected to a standardized rest-stimulation (transcutaneous stimulation)-protocol while muscle energetics using 31Phosphorus magnetic resonance spectroscopy and muscle force production were assessed and recorded. Eight mice were supplemented with hydroxyurea (HU) for 6 weeks while 9 were not (CON). HU mice displayed a higher specific total force production compared to the CON, with 501.35 ± 54.12 N/mm3 and 437.43 ± 57.10 N/mm3 respectively (+14.6%, p < 0.05). Neither the total rate of energy consumption nor the oxidative metabolic rate were significantly different between groups. The present results illustrated a positive effect of a HU chronic supplementation on skeletal muscle function in mice with mild anemia.