Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(11): 1273-1280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500772

RESUMO

Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers. Here we show that the flagship nano-components of spintronics, magnetic tunnel junctions, can be connected into multilayer neural networks where they implement both synapses and neurons thanks to their magnetization dynamics, and communicate by processing, transmitting and receiving radiofrequency signals. We build a hardware spintronic neural network composed of nine magnetic tunnel junctions connected in two layers, and show that it natively classifies nonlinearly separable radiofrequency inputs with an accuracy of 97.7%. Using physical simulations, we demonstrate that a large network of nanoscale junctions can achieve state-of-the-art identification of drones from their radiofrequency transmissions, without digitization and consuming only a few milliwatts, which constitutes a gain of several orders of magnitude in power consumption compared to currently used techniques. This study lays the foundation for deep, dynamical, spintronic neural networks.

2.
Sci Rep ; 6: 39216, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982093

RESUMO

Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.


Assuntos
Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
3.
IEEE Trans Biomed Circuits Syst ; 9(2): 166-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25879967

RESUMO

Spin-transfer torque magnetic memory (STT-MRAM) is currently under intense academic and industrial development, since it features non-volatility, high write and read speed and high endurance. In this work, we show that when used in a non-conventional regime, it can additionally act as a stochastic memristive device, appropriate to implement a "synaptic" function. We introduce basic concepts relating to spin-transfer torque magnetic tunnel junction (STT-MTJ, the STT-MRAM cell) behavior and its possible use to implement learning-capable synapses. Three programming regimes (low, intermediate and high current) are identified and compared. System-level simulations on a task of vehicle counting highlight the potential of the technology for learning systems. Monte Carlo simulations show its robustness to device variations. The simulations also allow comparing system operation when the different programming regimes of STT-MTJs are used. In comparison to the high and low current regimes, the intermediate current regime allows minimization of energy consumption, while retaining a high robustness to device variations. These results open the way for unexplored applications of STT-MTJs in robust, low power, cognitive-type systems.


Assuntos
Redes Neurais de Computação , Sinapses/fisiologia , Torque , Humanos , Magnetismo , Método de Monte Carlo , Nanotecnologia , Neurônios/metabolismo , Neurônios/fisiologia
4.
Front Neurosci ; 9: 51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25784849

RESUMO

Memristive devices present a new device technology allowing for the realization of compact non-volatile memories. Some of them are already in the process of industrialization. Additionally, they exhibit complex multilevel and plastic behaviors, which make them good candidates for the implementation of artificial synapses in neuromorphic engineering. However, memristive effects rely on diverse physical mechanisms, and their plastic behaviors differ strongly from one technology to another. Here, we present measurements performed on different memristive devices and the opportunities that they provide. We show that they can be used to implement different learning rules whose properties emerge directly from device physics: real time or accelerated operation, deterministic or stochastic behavior, long term or short term plasticity. We then discuss how such devices might be integrated into a complete architecture. These results highlight that there is no unique way to exploit memristive devices in neuromorphic systems. Understanding and embracing device physics is the key for their optimal use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA