Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-14, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35343415

RESUMO

Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content, our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column position and its intensity with a higher degree of precision.

2.
J Phys Condens Matter ; 34(25)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35354123

RESUMO

In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO2-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO2-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility. We show that the inclusion of spin polarization can significantly reduce the major activation barrier in the proposed reaction pathway of CO oxidation on ceria-supported Pt nanoparticles. For metal-support interactions, surface spin polarization enhances the bonding between Pt nanoparticles and ceria surface oxygen, while CO adsorption on Pt nanoparticles weakens the interfacial interaction regardless of spin polarization. However, the stable surface spin polarization can only be found in the simulations based on the Gaussian type orbital basis. Given the potential importance in the design of future high-performance catalysts, our present study suggests a pressing need to examine the surface ferromagnetism of transition metal oxides in both experiment and theory.

3.
Nat Commun ; 12(1): 5789, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608153

RESUMO

Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e., fluxional behavior) of the interface during catalysis. Here, we employ aberration-corrected operando electron microscopy to visualize the structural dynamics occurring at and near Pt/CeO2 interfaces during CO oxidation. We show that the catalytic turnover frequency correlates with fluxional behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the CeO2 support surface. Overall, the results implicate the interfacial Pt-O-Ce bonds anchoring the Pt to the support as being involved also in the catalytically-driven oxygen transfer process, and they suggest that oxygen reduction takes place on the highly reduced CeO2 surface before migrating to the interfacial perimeter for reaction with CO.

4.
Nat Commun ; 12(1): 914, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568629

RESUMO

Oxide-supported noble metal catalysts have been extensively studied for decades for the water gas shift (WGS) reaction, a catalytic transformation central to a host of large volume processes that variously utilize or produce hydrogen. There remains considerable uncertainty as to how the specific features of the active metal-support interfacial bonding-perhaps most importantly the temporal dynamic changes occurring therein-serve to enable high activity and selectivity. Here we report the dynamic characteristics of a Pt/CeO2 system at the atomic level for the WGS reaction and specifically reveal the synergistic effects of metal-support bonding at the perimeter region. We find that the perimeter Pt0 - O vacancy-Ce3+ sites are formed in the active structure, transformed at working temperatures and their appearance regulates the adsorbate behaviors. We find that the dynamic nature of this site is a key mechanistic step for the WGS reaction.

5.
Ultramicroscopy ; 218: 113080, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32795882

RESUMO

In situ environmental transmission electron microscopy (ETEM) is a powerful tool for observing structural modifications taking place in heterogeneous catalysts under reaction conditions. However, to strengthen the link between catalyst structure and functionality, an operando measurement must be performed in which reaction kinetics and catalyst structure are simultaneously determined. To determine chemical kinetics for gas-phase catalysis, it is necessary to develop a reliable chemical engineering model to describe catalysis as well as heat and mass transport processes within the ETEM cell. Here, we establish a finite element model to determine the gas and temperature profiles during catalysis in an open-cell operando ETEM experiment. The model is applied to a SiO2-supported Ru catalyst performing CO oxidation. Good agreement is achieved between simulated compositions and those measured experimentally across a temperature range of 25 - 350 °C. In general, for lower conversions, the simulations show that the temperature and gas are relatively homogeneous within the hot zone of the TEM holder where the catalyst is located. The uniformity of gas and temperature indicates that the ETEM reactor system behavior approximates that of a continuously stirred tank reactor (CSTR). The large degree of gas-phase uniformity also allows one to estimate the catalytic conversion of reactants in the cell to within 10% using electron energy-loss spectroscopy. Moreover, the findings indicate that for reactant conversions below 35%, one can reliably evaluate the steady-state reaction rate of catalyst nanoparticles that are imaged on the TEM grid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA