Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurosci ; 42(46): 8658-8669, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36195439

RESUMO

Neurons in the gustatory cortex (GC) represent taste through time-varying changes in their spiking activity. The predominant view is that the neural firing rate represents the sole unit of taste information. It is currently not known whether the phase of spikes relative to lick timing is used by GC neurons for taste encoding. To address this question, we recorded spiking activity from >500 single GC neurons in male and female mice permitted to freely lick to receive four liquid gustatory stimuli and water. We developed a set of data analysis tools to determine the ability of GC neurons to discriminate gustatory information and then to quantify the degree to which this information exists in the spike rate versus the spike timing or phase relative to licks. These tools include machine learning algorithms for classification of spike trains and methods from geometric shape and functional data analysis. Our results show that while GC neurons primarily encode taste information using a rate code, the timing of spikes is also an important factor in taste discrimination. A further finding is that taste discrimination using spike timing is improved when the timing of licks is considered in the analysis. That is, the interlick phase of spiking provides more information than the absolute spike timing itself. Overall, our analysis demonstrates that the ability of GC neurons to distinguish among tastes is best when spike rate and timing is interpreted relative to the timing of licks.SIGNIFICANCE STATEMENT Neurons represent information from the outside world via changes in their number of action potentials (spikes) over time. This study examines how neurons in the mouse gustatory cortex (GC) encode taste information when gustatory stimuli are experienced through the active process of licking. We use electrophysiological recordings and data analysis tools to evaluate the ability of GC neurons to distinguish tastants and then to quantify the degree to which this information exists in the spike rate versus the spike timing relative to licks. We show that the neuron's ability to distinguish between tastes is higher when spike rate and timing are interpreted relative to the timing of licks, indicating that the lick cycle is a key factor for taste processing.


Assuntos
Percepção Gustatória , Paladar , Masculino , Feminino , Camundongos , Animais , Paladar/fisiologia , Percepção Gustatória/fisiologia , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Comportamento Animal
2.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850853

RESUMO

Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of the GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective-only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian oral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.


Assuntos
Córtex Insular , Paladar , Camundongos , Masculino , Feminino , Animais , Paladar/fisiologia , Vigília/fisiologia , Percepção Gustatória/fisiologia , Água , Córtex Cerebral , Mamíferos
3.
J Neurophysiol ; 123(5): 1995-2009, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319839

RESUMO

In the last two decades, a considerable amount of work has been devoted to investigating the neural processing and dynamics of the primary taste cortex of rats. Surprisingly, much less information is available on cortical taste electrophysiology in awake mice, an animal model that is taking on a more prominent role in taste research. Here we present electrophysiological evidence demonstrating how the gustatory cortex (GC) encodes the basic taste qualities (sweet, salty, sour, and bitter) and water when stimuli are actively sampled through licking, the stereotyped behavior by which mice control the access of fluids in the mouth. Mice were trained to receive each stimulus on a fixed ratio schedule in which they had to lick a dry spout six times to receive a tastant on the seventh lick. Electrophysiological recordings confirmed that GC neurons encode both chemosensory and hedonic aspects of actively sampled tastants. In addition, our data revealed two other main findings: GC neurons rapidly encode information about taste qualities in as little as 120 ms, and nearly half of the recorded neurons exhibit spiking activity entrained to licking at rates up to 8 Hz. Overall, our results highlight how the GC of active licking mice rapidly encodes information about taste qualities as well as ongoing sampling behavior, expanding our knowledge on cortical taste processing.NEW & NOTEWORTHY Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.


Assuntos
Comportamento Animal/fisiologia , Prazer/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção Gustatória/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Cereb Cortex ; 29(4): 1802-1815, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721984

RESUMO

Dysfunction of motor cortices is thought to contribute to motor disorders such as Parkinson's disease (PD). However, little is known on the link between cortical dopaminergic loss, abnormalities in motor cortex neural activity and motor deficits. We address the role of dopamine in modulating motor cortical activity by focusing on the anterior lateral motor cortex (ALM) of mice performing a cued-licking task. We first demonstrate licking deficits and concurrent alterations of spiking activity in ALM of head-fixed mice with unilateral depletion of dopaminergic neurons (i.e., mice injected with 6-OHDA into the medial forebrain bundle). Hemilesioned mice displayed delayed licking initiation, shorter duration of licking bouts, and lateral deviation of tongue protrusions. In parallel with these motor deficits, we observed a reduction in the prevalence of cue responsive neurons and altered preparatory activity. Acute and local blockade of D1 receptors in ALM recapitulated some of the key behavioral and neural deficits observed in hemilesioned mice. Altogether, our data show a direct relationship between cortical D1 receptor modulation, cue-evoked, and preparatory activity in ALM, and licking initiation.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Atividade Motora/fisiologia , Córtex Motor/metabolismo , Transtornos Parkinsonianos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sinais (Psicologia) , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Boca , Oxidopamina , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
6.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36798208

RESUMO

Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally-sourced thermal inputs are represented in the gustatory cortex (GC) we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally-sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian intraoral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.

7.
Front Syst Neurosci ; 15: 772286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867223

RESUMO

The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.

8.
Curr Biol ; 30(10): 1834-1844.e5, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32243860

RESUMO

Research over the past decade has established the gustatory insular cortex (GC) as a model for studying how primary sensory cortices integrate sensory, affective, and cognitive signals. This integration occurs through time-varying patterns of neural activity. Selective silencing of GC activity during specific temporal windows provided evidence for GC's role in mediating taste palatability and expectation. Recent results also suggest that this area may play a role in decision making. However, existing data are limited to GC involvement in controlling the timing of stereotyped, orofacial reactions to aversive tastants during consumption. Here, we present electrophysiological, chemogenetic, and optogenetic results demonstrating the key role of GC in the execution of a taste-guided, reward-directed decision-making task. Mice were trained in a two-alternative choice task, in which they had to associate tastants sampled from a central spout with different actions (i.e., licking either a left or a right spout). Stimulus sampling and action were separated by a delay period. Electrophysiological recordings revealed chemosensory processing during the sampling period and the emergence of task-related, cognitive signals during the delay period. Chemogenetic silencing of GC impaired task performance. Optogenetic silencing of GC allowed us to tease apart the contribution of activity during sampling and delay periods. Although silencing during the sampling period had no effect, silencing during the delay period significantly impacted behavioral performance, demonstrating the importance of the cognitive signals processed by GC in driving decision making. Altogether, our data highlight a novel role of GC in controlling taste-guided, reward-directed choices and actions.


Assuntos
Córtex Cerebral/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/citologia , Aprendizagem/fisiologia , Camundongos
9.
Handb Clin Neurol ; 164: 187-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31604547

RESUMO

The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.


Assuntos
Vias Aferentes/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia , Paladar/fisiologia , Vias Aferentes/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Humanos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia
10.
Cell Rep ; 28(11): 2966-2978.e5, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509755

RESUMO

The olfactory environment is first represented by glomerular activity patterns in the olfactory bulb. It remains unclear how these representations intersect with sampling behavior to account for the time required to discriminate odors. Using different chemical classes, we investigate glomerular representations and sniffing behavior during olfactory decision-making. Mice rapidly discriminate odorants and learn to increase sniffing frequency at a fixed latency after trial initiation, independent of odor identity. Relative to the increase in sniffing frequency, monomolecular odorants are discriminated within 10-40 ms, while binary mixtures require an additional 60-70 ms. Intrinsic imaging of glomerular activity in anesthetized and awake mice reveals that Euclidean distance between activity patterns and the time needed for discriminations are anti-correlated. Therefore, the similarity of glomerular patterns and their activation strengths, rather than sampling behavior, define the extent of neuronal processing required for odor discrimination, establishing a neural metric to predict olfactory discrimination time.


Assuntos
Comportamento Animal/fisiologia , Discriminação Psicológica/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Animais , Discriminação Psicológica/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Tempo de Reação/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia
11.
Curr Opin Neurobiol ; 40: 118-124, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27455038

RESUMO

Most of the general principles used to explain sensory cortical function have been inferred from experiments performed on neocortical, primary sensory areas. Attempts to apply a neocortical view to the study of the gustatory cortex (GC) have provided only a limited understanding of this area. Failures to conform GC to classical neocortical principles have been implicitly interpreted as a demonstration of GC's uniqueness. Here we propose to take the opposite perspective, dismissing GC's uniqueness and using principles extracted from its study as a lens for looking at neocortical sensory function. In this review, we describe three significant findings related to gustatory cortical function and advocate their relevance for understanding neocortical sensory areas.


Assuntos
Lobo Parietal/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/fisiologia , Percepção Gustatória/fisiologia , Animais , Humanos
12.
Elife ; 52016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572258

RESUMO

A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.


Assuntos
Aprendizagem , Córtex Somatossensorial/fisiologia , Percepção Gustatória , Animais , Condicionamento Clássico , Ratos
13.
Sci Rep ; 6: 36514, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824096

RESUMO

Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness).


Assuntos
Potenciais Evocados/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Masculino , Camundongos , Odorantes , Bulbo Olfatório/citologia , Células Receptoras Sensoriais/citologia
14.
Cell Rep ; 12(2): 313-25, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26146075

RESUMO

Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS) imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Acoplamento Neurovascular/fisiologia , Bulbo Olfatório/fisiologia , Animais , Axônios/metabolismo , Difusão Dinâmica da Luz , Feminino , Hemodinâmica , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Neurotransmissores/metabolismo , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Concentração Osmolar
15.
Elife ; 3: e02109, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24642413

RESUMO

Sensory inputs are remarkably organized along all sensory pathways. While sensory representations are known to undergo plasticity at the higher levels of sensory pathways following peripheral lesions or sensory experience, less is known about the functional plasticity of peripheral inputs induced by learning. We addressed this question in the adult mouse olfactory system by combining odor discrimination studies with functional imaging of sensory input activity in awake mice. Here we show that associative learning, but not passive odor exposure, potentiates the strength of sensory inputs up to several weeks after the end of training. We conclude that experience-dependent plasticity can occur in the periphery of adult mouse olfactory system, which should improve odor detection and contribute towards accurate and fast odor discriminations. DOI: http://dx.doi.org/10.7554/eLife.02109.001.


Assuntos
Aprendizagem , Plasticidade Neuronal , Olfato , Animais , Potenciação de Longa Duração , Camundongos , Odorantes , Células Receptoras Sensoriais/fisiologia
16.
Nat Neurosci ; 15(4): 537-9, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22406552

RESUMO

In mammals, odorant molecules are thought to activate only a few glomeruli, leading to the hypothesis that odor representation in the olfactory bulb is sparse. However, the studies supporting this model used anesthetized animals or monomolecular odorants at limited concentration ranges. Using optical imaging and two-photon microscopy, we found that natural odorants at their native concentrations could elicit dense representations in the olfactory bulb. Both anesthesia and odorant concentration were found to modulate the representation density of natural odorants.


Assuntos
Mapeamento Encefálico/métodos , Odorantes , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA