Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401891

RESUMO

Klebsiella pneumoniae is the leading cause of neonatal sepsis and is increasingly difficult to treat due to antibiotic resistance. Vaccination represents a tractable approach to combat this resistant bacterium; however, there is currently not a licensed vaccine. Surface polysaccharides, including O-antigens of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven predominant O-antigen subtypes in K. pneumoniae. Each bioconjugate was immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains. Further, sera from vaccinated mice induced complement-mediated killing of many of these strains. Finally, increased capsule interfered with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits limited efficacy against some, but not all, K. pneumoniae isolates.

2.
Int J Food Microbiol ; 424: 110840, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39126753

RESUMO

The biosynthetic machinery for cell wall polysaccharide (CWPS) formation in Lactococcus lactis and Lactococcus cremoris is encoded by the cwps locus. The CWPS of lactococci typically consists of a neutral rhamnan component, which is embedded in the peptidoglycan, and to which a surface-exposed side chain oligosaccharide or polysaccharide pellicle (PSP) component is attached. The rhamnan component has been shown for several lactococcal strains to consist of a repeating rhamnose trisaccharide subunit, while the side chain is diverse in glycan content, polymeric status and glycosidic linkage architecture. The observed structural diversity of the CWPS side chain among lactococcal strains is reflected in the genetic diversity within the variable 3' region of the corresponding cwps loci. To date, four distinct cwps genotypes (A, B, C, D) have been identified, while eight subtypes (C1 through to C8) have been recognized among C-genotype strains. In the present study, we report the identification of three novel subtypes of the lactococcal cwps C genotypes, named C9, C10 and C11. The CWPS of four isolates representing C7, C9, C10 and C11 genotypes were analysed using 2D NMR to reveal their unique CWPS structures. Through this analysis, the structure of one novel rhamnan, three distinct PSPs and three exopolysaccharides were elucidated. Results obtained in this study provide further insights into the complex nature and fascinating diversity of lactococcal CWPSs. This highlights the need for a holistic view of cell wall-associated glycan structures which may contribute to robustness of certain strains against infecting bacteriophages. This has clear implications for the fermented food industry that relies on the consistent application of lactococcal strains in mesophilic production systems.

3.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168360

RESUMO

Klebsiella pneumoniae is a concerning pathogen that is now the leading cause of neonatal sepsis and is increasingly difficult to treat due to heightened antibiotic resistance. Thus, there is an urgent need for preventive and effective immunotherapies targeting K. pneumoniae. Vaccination represents a tractable approach to combat this resistant bacterium in some settings; however, there is currently not a licensed K. pneumoniae vaccine available. K. pneumoniae surface polysaccharides, including the terminal O-antigen polysaccharides of lipopolysaccharide, have long been attractive candidates for vaccine inclusion. Herein we describe the generation of a bioconjugate vaccine targeting seven of the predominant O-antigen subtypes in K. pneumoniae. Each of the seven bioconjugates were immunogenic in isolation, with limited cross-reactivity among subtypes. Vaccine-induced antibodies demonstrated varying degrees of binding to a wide variety of K. pneumoniae strains, including suspected hypervirulent strains, all expressing different O-antigen and capsular polysaccharide combinations. Further, sera from vaccinated mice induced complement-mediated killing of many of these K. pneumoniae strains. Finally, we found that increased quantity of capsule interferes with O-antigen antibodies' ability to bind and mediate killing of some K. pneumoniae strains, including those carrying hypervirulence-associated genes. Taken together, these data indicate that this novel heptavalent O-antigen bioconjugate vaccine formulation exhibits promising efficacy against some, but not all, K. pneumoniae isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA