Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(1): 23-33, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171180

RESUMO

Intracellular binding of small-molecule phospho-Ags to the HMBPP receptor complex in infected cells leads to extracellular detection by T cells expressing the Vγ9Vδ2 TCR, a noncanonical method of Ag detection. The butyrophilin proteins BTN2A1 and BTN3A1 are part of the complex; however, their precise roles are unclear. We suspected that BTN2A1 and BTN3A1 form a tetrameric (dimer of dimers) structure, and we wanted to probe the importance of the BTN2A1 homodimer. We analyzed mutations to human BTN2A1, using internal domain or full-length BTN2A1 constructs, expressed in Escherichia coli or human K562 cells, that might disrupt its structure and/or function. Although BTN2A1 is a disulfide-linked homodimer, mutation of cysteine residues C247 and C265 did not affect the ability to stimulate T cell IFN-γ production by ELISA. Two mutations of the juxtamembrane region (at EKE282) failed to impact BTN2A1 function. In contrast, single point mutations (L318G and L325G) near the BTN2A1 B30.2 domain blocked phospho-Ag response. Size exclusion chromatography and nuclear magnetic resonance (NMR) experiments showed that the isolated BTN2A1 B30.2 domain is a homodimer, even in the absence of its extracellular and transmembrane region. [31P]-NMR experiments confirmed that HMBPP binds to BTN3A1 but not BTN2A1, and binding abrogates signals from both phosphorus atoms. Furthermore, the BTN2A1 L325G mutation but not the L318G mutation prevents both homodimerization of BTN2A1 internal domain constructs in size exclusion chromatography (and NMR) experiments and their binding to HMBPP-bound BTN3A1 in isothermal titration calorimetry experiments. Together, these findings support the importance of homodimerization within the BTN2A1 internal domain for phospho-Ag detection.


Assuntos
Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Antígenos/metabolismo , Antígenos CD/metabolismo , Butirofilinas/genética , Mutação , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000018

RESUMO

Consecutive interactions of 3Na+ or 1Ca2+ with the Na+/Ca2+ exchanger (NCX) result in an alternative exposure (access) of the cytosolic and extracellular vestibules to opposite sides of the membrane, where ion-induced transitions between the outward-facing (OF) and inward-facing (IF) conformational states drive a transport cycle. Here, we investigate sub-state populations of apo and ion-bound species in the OF and IF states by analyzing detergent-solubilized and nanodisc-reconstituted preparations of NCX_Mj with 19F-NMR. The 19F probe was covalently attached to the cysteine residues at entry locations of the cytosolic and extracellular vestibules. Multiple sub-states of apo and ion-bound species were observed in nanodisc-reconstituted (but not in detergent-solubilized) NCX_Mj, meaning that the lipid-membrane environment preconditions multiple sub-state populations toward the OF/IF swapping. Most importantly, ion-induced sub-state redistributions occur within each major (OF or IF) state, where sub-state interconversions may precondition the OF/IF swapping. In contrast with large changes in population redistributions, the sum of sub-state populations within each inherent state (OF or IF) remains nearly unchanged upon ion addition. The present findings allow the further elucidation of structure-dynamic modules underlying ion-induced conformational changes that determine a functional asymmetry of ion access/translocation at opposite sides of the membrane and ion transport rates concurring physiological demands.


Assuntos
Detergentes , Conformação Proteica , Trocador de Sódio e Cálcio , Detergentes/química , Trocador de Sódio e Cálcio/química , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Íons/química , Nanoestruturas/química , Solubilidade , Animais , Espectroscopia de Ressonância Magnética/métodos
3.
Hum Genomics ; 16(1): 24, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869513

RESUMO

BACKGROUND: More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). RESULTS: We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of "classic" transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. CONCLUSIONS: Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle.


Assuntos
Regulação da Expressão Gênica , Transcriptoma , Humanos , Músculo Esquelético , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição , Transcriptoma/genética
4.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37933780

RESUMO

When electrolyte solutions are confined in micro- and nanochannels their conductivity is significantly different from those in a bulk phase. Here we revisit the theory of this phenomenon by focusing attention on the reduction in the ion mobility with the concentration of salt and a consequent impact to the conductivity of a monovalent solution, from bulk to confined in a narrow slit. We first give a systematic treatment of electrophoresis of ions and obtain equations for their zeta potentials and mobilities. The latter are then used to obtain a simple expression for a bulk conductivity, which is valid in a concentration range up to a few molars and more accurate than prior analytic theories. By extending the formalism to the electrolyte solution in the charged channel the equations describing the conductivity in different modes are presented. They can be regarded as a generalization of prior work on the channel conductivity to a more realistic case of a nonzero reduction of the electrophoretic mobility of ions with salt concentration. Our analysis provides a framework for interpreting measurements on the conductivity of electrolyte solutions in the bulk and in narrow channels.

5.
Eur Phys J E Soft Matter ; 44(4): 50, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33834353

RESUMO

We consider sedimented at a solid wall particles that are immersed in water containing small additives of photosensitive ionic surfactants. It is shown that illumination with an appropriate wavelength, a beam intensity profile, shape and size could lead to a variety of dynamic, both unsteady and steady state, configurations of particles. These dynamic, well-controlled and switchable particle patterns at the wall are due to an emerging diffusio-osmotic flow that takes its origin in the adjacent to the wall electrostatic diffuse layer, where the concentration gradients of surfactant are induced by light. The conventional nonporous particles are passive and can move only with already generated flow. However, porous colloids actively participate themselves in the flow generation mechanism at the wall, which also sets their interactions that can be very long ranged. This light-induced diffusio-osmosis opens novel avenues to manipulate colloidal particles and assemble them to various patterns. We show in particular how to create and split optically the confined regions of particles of tunable size and shape, where well-controlled flow-induced forces on the colloids could result in their crystalline packing, formation of dilute lattices of well-separated particles, and other states.

6.
J Chem Phys ; 154(16): 164701, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940807

RESUMO

An electrokinetic (zeta) potential of charged permeable porous films on solid supports generally exceeds their surface potential, which often builds up to a quite high value itself. Recent work provided a quantitative understanding of zeta potentials of thick, compared to the extension of an inner electrostatic diffuse layer, porous films. Here, we consider porous coatings of thickness comparable to or smaller than that of the inner diffuse layer. Our theory, which is valid even when electrostatic potentials become quite high and accounts for finite hydrodynamic permeability of the porous materials, provides a framework for interpreting the difference between values of surface and zeta potentials in various situations. Analytic approximations for the zeta potential in the experimentally relevant limits provide a simple explanation of transitions between different regimes of electro-osmotic flows and also suggest strategies for its tuning in microfluidic applications.

7.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638694

RESUMO

Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism. Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and human skeletal muscle during an exercise activate different signaling pathways and induce the expression of many genes in working muscle fibres, the systematic understanding of signaling-metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is still elusive. Herein, a physiologically based computational model of skeletal muscle comprising energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the expression regulation of genes with early and delayed responses was developed based on a modular modeling approach and included 171 differential equations and more than 640 parameters. The integrated modular model validated on diverse including original experimental data and different exercise modes provides a comprehensive in silico platform in order to decipher and track cause-effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.


Assuntos
Sinalização do Cálcio , Metabolismo Energético , Exercício Físico , Regulação da Expressão Gênica , Modelos Biológicos , Músculo Esquelético/metabolismo , Humanos
8.
J Biol Chem ; 294(44): 15914-15931, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31551353

RESUMO

A third of the genes in prokaryotic and eukaryotic genomes encode membrane proteins that are either essential for signal transduction and solute transport or function as scaffold structures. Unlike many of their soluble counterparts, the overall structural and functional organization of membrane proteins is sparingly understood. Recent advances in X-ray crystallography, cryo-EM, and nuclear magnetic resonance (NMR) are closing this gap by enabling an in-depth view of these ever-elusive proteins at atomic resolution. Despite substantial technological advancements, however, the overall proportion of membrane protein entries in the Protein Data Bank (PDB) remains <4%. This paucity is mainly attributed to difficulties associated with their expression and purification, propensity to form large multisubunit complexes, and challenges pertinent to identification of an ideal detergent, lipid, or detergent/lipid mixture that closely mimic their native environment. NMR is a powerful technique to obtain atomic-resolution and dynamic details of a protein in solution. This is accomplished through an assortment of isotopic labeling schemes designed to acquire multiple spectra that facilitate deduction of the final protein structure. In this review, we discuss current approaches and technological developments in the determination of membrane protein structures by solution NMR and highlight recent structural and mechanistic insights gained with this technique. We also discuss strategies for overcoming size limitations in NMR applications, and we explore a plethora of membrane mimetics available for the structural and mechanistic understanding of these essential cellular proteins.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Animais , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Micelas , Nanoestruturas/química , Domínios Proteicos
9.
Langmuir ; 36(25): 6994-7004, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32073263

RESUMO

The repulsive surface forces, such as electrostatic or steric, acting between particles explain why they remain well separated in aqueous electrolyte solutions and are responsible for the stability of colloidal dispersions. However, the effective range of these interactions is always well below hundreds of nanometers and typically can be controlled by advanced manipulations such as tuning the electrolyte concentration or modifying the particle surface or, in some more specific cases, via subjecting the suspension to an external electric or magnetic field. Here we employ solutions with small additives of a photosensitive ionic surfactant to investigate if a repulsive interaction of microsized particles sedimented at the solid surface can be remotely controlled simply by illuminating it with an appropriate wavelength. We show that interactions of conventional impermeable particles remain practically unaffected by light, but, in contrast, for porous particles, we observe a long-range repulsion, several orders of magnitude longer than any conceivable equilibrium surface force. This repulsion emerges due to the diffusio-osmotic flow generated near the porous particles that in this scenario are playing a role of micropumps. The diffusio-osmotic repulsion of porous particles can be used for a remote control of their two-dimensional assemblies at the solid wall, and in particular, we demonstrate that by simply using two different illumination wavelengths it is possible to reversibly switch the state of porous particle dispersion from densely packed surface aggregates to a periodic lattice of particles separated by distances on the order of tens of micrometers.

10.
Soft Matter ; 16(4): 929-938, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31815270

RESUMO

We discuss osmotic equilibria between soft permeable particles, of radius R and volume charge density ρ, and bulk electrolyte solutions of inverse Debye length κ. Existing models are based on a simplified assumption of weakly charged particles. Here we derive analytical approximations for the distribution of potentials, ions and pressure in a system, suitable even when ρ is quite large. Our theory is valid not only for "large" particles (κR≫ 1), where the central part is fully screened, but also for weakly screened "small" particles (κR≤ 1) with overlapping inner diffuse layers. Besides, we present novel coarse-grained simulations to validate the analysis and illustrate the variation of potential/ion profiles in response to changes in κR and ρ. Our simulations also allow us to argue that swelling of both "large" and "small" particles is uniform, although their inner non-uniform local pressure profiles are essentially and qualitatively different. These results are directly relevant for a variety of permeable charged objects, from polymer micro- and nanogels to more rigid porous colloids.

11.
J Strength Cond Res ; 34(4): 1103-1112, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30299394

RESUMO

Lysenko, EA, Popov, DV, Vepkhvadze, TF, Sharova, AP, and Vinogradova, OL. Moderate-intensity strength exercise to exhaustion results in more pronounced signaling changes in skeletal muscles of strength-trained compared with untrained individuals. J Strength Cond Res 34(4): 1103-1112, 2020-The aim of our investigation was to compare the response pattern of signaling proteins and genes regulating protein synthesis and degradation in skeletal muscle after strength exercise sessions performed to volitional fatigue in strength-trained and untrained males. Eight healthy recreationally active males and 8 power-lifting athletes performed 4 sets of unilateral leg presses to exhaustion (65% 1 repetition maximum). Biopsy samples of m. vastus lateralis were obtained before, 1 and 5 hours after cessation of exercise. Phosphorylation of p70S6k, 4EBP1, and ACC increased, whereas phosphorylation of eEF2 and FOXO1 decreased only in the trained group after exercise. Expression of DDIT4, MURF1, and FOXO1 mRNAs increased and expression of MSTN mRNA decreased also only in the trained group after exercise. In conclusion, moderate-intensity strength exercise performed to volitional fatigue changed the phosphorylation status of mTORC1 downstream signaling molecules and markers of ubiquitin-proteasome system activation in trained individuals, suggesting activation of protein synthesis and degradation. In contrast to the trained group, signaling responses in the untrained group were considerably less pronounced. It can be assumed that the slowdown in muscle mass gain as the athletes increase in qualification cannot be associated with a decrease in the sensitivity of systems regulating protein metabolism, but possibly with inadequate intake or assimilation of nutrients necessary for anabolism. Perhaps, the intake of highly digestible protein or protein-carbohydrate dietary supplements could contribute to the increase in muscle mass in strength athletes.


Assuntos
Músculo Esquelético/metabolismo , Treinamento Resistido/métodos , Levantamento de Peso/fisiologia , Adulto , Atletas , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Fadiga Muscular/fisiologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Adulto Jovem
12.
Am J Physiol Endocrinol Metab ; 316(4): E605-E614, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779632

RESUMO

Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.


Assuntos
Treino Aeróbico , Exercício Físico , Proteínas Mitocondriais/genética , Contração Muscular/genética , Músculo Quadríceps/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Adulto Jovem
13.
Phys Chem Chem Phys ; 21(41): 23036-23043, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599900

RESUMO

Hydrophobic surfaces with large slip lengths have the potential to enhance electro-osmotic flows. Existing theories of electroosmosis in hydrophobic channels postulate immobile surface charges and/or make a number of simplifying assumptions by considering mostly weakly charged surfaces and thin diffuse layers compared to channel dimension. In this paper, we extend prior models by focusing on planar and cylindrical nanochannels. Our theory accounts for a hydrodynamic slip and a mobility of surface charges, and is valid not only on the scale of the nanochannel with thin diffuse layers, but also on the scale of the overlapping diffuse layer. The model is simple enough to allow us to derive analytical approximations for the electro-osmotic velocities even when the surface potential and charge density are quite large. We also present numerical solutions to validate the analysis and illustrate the variation of electro-osmotic velocities in response to changes in the channel size, potential, surface charge and its mobility, hydrodynamic slip length, and salt concentration. Our results are directly relevant for carbon nanotubes, graphene nanochannels, and conventional nanoporous membranes.

14.
FASEB J ; 31(11): 4697-4706, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705810

RESUMO

Small isoprenoid diphosphates, such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST296AA or T304A) investigated, confirm that the backbone amide of at least one Thr (Thr304), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr296/297) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM2-C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region.


Assuntos
Antígenos CD/química , Butirofilinas/química , Organofosfatos/química , Substituição de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Humanos , Células K562 , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Organofosfatos/metabolismo , Domínios Proteicos , Difração de Raios X
15.
Langmuir ; 34(41): 12259-12269, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30240564

RESUMO

Density functional theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free-energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the Bayesian ensemble error functional with van der Waals correlations exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the oxygen reduction reaction. We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O*, and find the trend Ru > Rh > Ir > Pt > Pd for (111) metal facets, where Ru binds OH* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating confidence values for quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric, using which certain experimentally observed surface phases and peak assignments can be better rationalized. The probabilistic approach enables a more accurate determination of the surface structure and can readily be incorporated in computational studies for better understanding the catalyst surface under operating conditions.

16.
J Exp Biol ; 221(Pt 17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950449

RESUMO

The cardiovascular system is adapted to gravity, and reactions to the loss of gravity in space are presumably dependent on body size. The dependence of hematological parameters and body fluid volume on simulated microgravity have never been studied as an allometric function before. Thus, we estimated red blood cell (RBC), blood and extracellular fluid volume in hindlimb-unloaded (HLU) or control (attached) mice, rats and rabbits. RBC decrease was found to be size independent, and the allometric dependency for RBC loss in HLU and control animals shared a common power (-0.054±0.008) but a different Y0 coefficient (8.66±0.40 and 10.73±0.49, respectively, P<0.05). Blood volume in HLU animals was unchanged compared with that of controls, disregarding body size. The allometric dependency of interstitial fluid volume in HLU and control mice shared Y0 (1.02±0.09) but had different powers N (0.708±0.017 and 0.648±0.016, respectively, P<0.05), indicating that the interstitial fluid volume increase during hindlimb unloading is more pronounced in larger animals. Our data underscore the importance of size-independent mechanisms of cardiovascular adaptation to weightlessness. Despite the fact that the use of mice hampers application of a straightforward translational approach, this species is useful for gravitational biology as a tool to investigate size-independent mechanisms of mammalian adaptation to microgravity.


Assuntos
Líquidos Corporais/fisiologia , Tamanho Corporal , Deslocamentos de Líquidos Corporais/fisiologia , Elevação dos Membros Posteriores/fisiologia , Simulação de Ausência de Peso , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos , Ratos Wistar , Ausência de Peso
17.
Biol Sport ; 35(3): 277-289, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30449946

RESUMO

We investigated acute exercise-induced gene expression in skeletal muscle adapted to aerobic training. Vastus lateralis muscle samples were taken in ten endurance-trained males prior to, and just after, 4 h, and 8 h after acute cycling sessions with different intensities, 70% and 50% V ˙ O 2 max . High-throughput RNA sequencing was applied in samples from two subjects to evaluate differentially expressed genes after intensive exercise (70% V ˙ O 2 max ), and then the changes in expression for selected genes were validated by quantitative PCR (qPCR). To define exercise-induced genes, we compared gene expression after acute exercise with different intensities, 70% and 50% V ˙ O 2 max , by qPCR. The transcriptome is dynamically changed during the first hours of recovery after intensive exercise (70% V ˙ O 2 max ). A computational approach revealed that the changes might be related to up- and down-regulation of the activity of transcription activators and repressors, respectively. The exercise increased expression of many genes encoding protein kinases, while genes encoding transcriptional regulators were both up- and down-regulated. Evaluation of the gene expression after exercise with different intensities revealed that some genes changed expression in an intensity-dependent manner, but others did not: the majority of genes encoding protein kinases, oxidative phosphorylation and activator protein (AP)-1-related genes significantly correlated with markers of exercise stress (power, blood lactate during exercise and post-exercise blood cortisol), while transcriptional repressors and circadian-related genes did not. Some of the changes in gene expression after exercise seemingly may be modulated by circadian rhythm.

18.
Exp Physiol ; 102(3): 366-375, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28074493

RESUMO

NEW FINDINGS: What is the central question of this study? This study was designed to investigate the role of AMPK in the regulation of PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. What is the main finding and its importance? Low-intensity exercise markedly increased the expression of PGC-1α mRNA via the alternative promoter, without increases in ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. A single dose of the AMPK activator metformin indicated that AMPK was not involved in regulating PGC-1α mRNA expression via the alternative promoter in endurance-trained human skeletal muscle. In human skeletal muscle, PGC-1α is constitutively expressed via the canonical promoter. In contrast, the expression of PGC-1α mRNA via the alternative promoter was found to be highly dependent on the intensity of exercise and to contribute largely to the postexercise increase of total PGC-1α mRNA. This study investigated the role of AMPK in regulating PGC-1α gene expression via the alternative promoter through a cAMP response element-binding protein-1-dependent mechanism in human skeletal muscle. AMPK activation and PGC-1α gene expression were assayed in skeletal muscle of nine endurance-trained men before and after low-intensity exercise (38% of maximal oxygen uptake) and with or without administration of a single dose (2 g) of the AMPK activator metformin. Low-intensity exercise markedly and significantly increased (∼100-fold, P < 0.05) the expression of PGC-1α mRNA via the alternative promoter, without increasing ACCSer79/222 (a marker of AMPK activation) and AMPKThr172 phosphorylation. Moreover, in contrast to placebo, metformin increased the level of ACCSer79/222 phosphorylation immediately after exercise (2.6-fold, P < 0.05). However postexercise expression of PGC-1α gene via the alternative promoter was not affected. This study was unable to confirm that AMPK plays a role in regulating PGC-1α gene expression via the alternative promoter in endurance-trained human skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Exercício Físico/fisiologia , Expressão Gênica/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Humanos , Masculino , Fosforilação/genética , Resistência Física/genética , Resistência Física/fisiologia , RNA Mensageiro/metabolismo , Adulto Jovem
19.
Soft Matter ; 13(41): 7498-7504, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28936528

RESUMO

We propose a novel microfluidic fractionation concept suitable for neutrally buoyant micron-sized particles. This approach takes advantage of the ability of grooved channel walls oriented at an angle to the direction of an external electric field to generate a transverse electroosmotic flow. Using computer simulations, we first demonstrate that the velocity of this secondary transverse flow depends on the distance from the wall, so neutrally buoyant particles, depending on their size and initial location, will experience different lateral displacements. We then optimize the geometry and orientation of the surface texture of the channel walls to maximize the efficiency of particle fractionation. Our method is illustrated in a full scale computer experiment where we mimic the typical microchannel with a bottom grooved wall and a source of polydisperse particles that are carried along the channel by the forward electroosmotic flow. Our simulations show that the particle dispersion can be efficiently separated by size even in a channel that is only a few texture periods long. These results can guide the design of novel microfluidic devices for efficient sorting of microparticles.

20.
Microb Ecol ; 73(2): 353-367, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27623963

RESUMO

The study addresses degradation of polyhydroxyalkanoates (PHA) with different chemical compositions-the polymer of 3-hydroxybutyric acid [P(3HB)] and copolymers of P(3HB) with 3-hydroxyvalerate [P(3HB/3HV)], 4-hydroxybutyrate [P(3HB/4HB)], and 3-hydroxyhexanoate [P(3HB/3HHx)] (10-12 mol%)-in the agro-transformed field soil of the temperate zone. Based on their degradation rates at 21 and 28 °C, polymers can be ranked as follows: P(3HB/4HB) > P(3HB/3HHx) > P(3HB/3HV) > P(3HB). The microbial community on the surface of the polymers differs from the microbial community of the soil with PHA specimens in the composition and percentages of species. Thirty-five isolates of bacteria of 16 genera were identified as PHA degraders by the clear zone technique, and each of the PHA had both specific and common degraders. P(3HB) was degraded by bacteria of the genera Mitsuaria, Chitinophaga, and Acidovorax, which were not among the degraders of the three other PHA types. Roseateles depolymerans, Streptomyces gardneri, and Cupriavidus sp. were specific degraders of P(3HB/4HB). Roseomonas massiliae and Delftia acidovorans degraded P(3HB/3HV), and Pseudoxanthomonas sp., Pseudomonas fluorescens, Ensifer adhaerens, and Bacillus pumilus were specific P(3HB/3HHx) degraders. All four PHA types were degraded by Streptomyces.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Fungos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Microbiologia do Solo , Ácido 3-Hidroxibutírico/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Caproatos/metabolismo , DNA Bacteriano , DNA Fúngico , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Genes Bacterianos , Genes Fúngicos , Hidroxibutiratos/metabolismo , Consórcios Microbianos , Ácidos Pentanoicos/metabolismo , Filogenia , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , RNA Ribossômico 16S/genética , Sibéria , Solo/química , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA