Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 227(4): 1358-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21604273

RESUMO

NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen-activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP-mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle-related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti-ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno-blockade of the neuropeptide SP.


Assuntos
Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Substância P/antagonistas & inibidores , Anticorpos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib , Ligantes , Masculino , Neoplasias/patologia , Antagonistas dos Receptores de Neurocinina-1 , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Quinazolinas/farmacologia , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância P/imunologia , Trastuzumab
2.
Front Cell Dev Biol ; 3: 32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052514

RESUMO

Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA