Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(45): 22872-22883, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31628252

RESUMO

RNA silencing is a major antiviral defense mechanism in plants and invertebrates. Plant ARGONAUTE1 (AGO1) is pivotal in RNA silencing, and hence is a major target for counteracting viral suppressors of RNA-silencing proteins (VSRs). P0 from Turnip yellows virus (TuYV) is a VSR that was previously shown to trigger AGO1 degradation via an autophagy-like process. However, the identity of host proteins involved and the cellular site at which AGO1 and P0 interact were unknown. Here we report that P0 and AGO1 associate on the endoplasmic reticulum (ER), resulting in their loading into ER-associated vesicles that are mobilized to the vacuole in an ATG5- and ATG7-dependent manner. We further identified ATG8-Interacting proteins 1 and 2 (ATI1 and ATI2) as proteins that associate with P0 and interact with AGO1 on the ER up to the vacuole. Notably, ATI1 and ATI2 belong to an endogenous degradation pathway of ER-associated AGO1 that is significantly induced following P0 expression. Accordingly, ATI1 and ATI2 deficiency causes a significant increase in posttranscriptional gene silencing (PTGS) activity. Collectively, we identify ATI1 and ATI2 as components of an ER-associated AGO1 turnover and proper PTGS maintenance and further show how the VSR P0 manipulates this pathway.


Assuntos
Proteínas Argonautas/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Proteólise , Vacúolos/metabolismo
2.
Plant Physiol ; 176(1): 378-391, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084900

RESUMO

Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Núcleo Celular/metabolismo , Polaridade Celular , Proteínas de Ligação ao GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/citologia , Raízes de Plantas/citologia , Transdução de Sinais , Arabidopsis/citologia , Etilenos/metabolismo , Movimento , Mutação/genética , Vacúolos/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(7): E806-15, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646449

RESUMO

Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Endocitose , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico
4.
Plant Physiol ; 172(4): 2245-2260, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27803190

RESUMO

The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Membrana Celular/ultraestrutura , Citoplasma/metabolismo , Endocitose , Mutação/genética , Transporte Proteico , Via Secretória , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
5.
Plant Cell ; 25(9): 3434-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24014545

RESUMO

Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Retículo Endoplasmático/metabolismo , Vacúolos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Genes Reporter , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Metabolismo dos Lipídeos , Meristema/enzimologia , Meristema/genética , Meristema/fisiologia , Meristema/ultraestrutura , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão , Esteróis/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(39): 15942-6, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019378

RESUMO

Posttranscriptional gene silencing (PTGS) mediated by siRNAs is an evolutionarily conserved antiviral defense mechanism in higher plants and invertebrates. In this mechanism, viral-derived siRNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. In Arabidopsis, a key component of RISC is ARGONAUTE1 (AGO1), which not only binds to siRNAs but also carries the RNA slicer activity. At present little is known about posttranslational mechanisms regulating AGO1 turnover. Here we report that the viral suppressor of RNA silencing protein P0 triggers AGO1 degradation by the autophagy pathway. Using a P0-inducible transgenic line, we observed that AGO1 degradation is blocked by inhibition of autophagy. The engineering of a functional AGO1 fluorescent reporter protein further indicated that AGO1 colocalizes with autophagy-related (ATG) protein 8a (ATG8a) positive bodies when degradation is impaired. Moreover, this pathway also degrades AGO1 in a nonviral context, especially when the production of miRNAs is impaired. Our results demonstrate that a selective process such as ubiquitylation can lead to the degradation of a key regulatory protein such as AGO1 by a degradation process generally believed to be unspecific. We anticipate that this mechanism will not only lead to degradation of AGO1 but also of its associated proteins and eventually small RNAs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Autofagia , Proteólise , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Inativação Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Ubiquitinação/genética
8.
Plant Cell ; 23(9): 3463-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21934143

RESUMO

The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.


Assuntos
Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Rede trans-Golgi/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Corpos Multivesiculares/ultraestrutura , Raízes de Plantas/metabolismo , Transporte Proteico , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Rede trans-Golgi/ultraestrutura
9.
J Exp Bot ; 64(2): 529-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23230024

RESUMO

PDMP (D-L-threo-1-phenyl-2-decanoyl amino-3-morpholino-1-propanol) is a well-known inhibitor of glucosylceramide synthase (GCS), a key enzyme in sphingolipid biosynthesis. Through the resultant increase in ceramides which interact with mTOR and Beclin1 (Atg6), this drug is also known to induce macroautophagy in mammalian cells. This study investigated the response of Arabidopsis root cells to PDMP, and what are probably numerous tightly packed small vacuoles in the control cells appear to fuse to form a single globular-shaped vacuole. However, during this fusion process, cytoplasm channels between the individual vacuoles become trapped in deep invaginations of the tonoplast. In both optical sections in the confocal laser scanning microscope and in ultrathin sections in the electron microscope, these invaginations have the appearance of cytoplasmic inclusions in the vacuole lumen. These changes in vacuole morphology are rapid (occurring within minutes after application of PDMP) and are independent of ongoing protein synthesis. The tonoplast invaginations remain visible for hours, but after 24h almost all disappear. Experiments designed to examine whether ceramide levels might be the cause of the PDMP effect have not proved conclusive. On the other hand, this study has been able to rule out the release of Ca(2+) ions from intracellular stores as a contributing factor.


Assuntos
Arabidopsis/efeitos dos fármacos , Morfolinas/farmacologia , Vacúolos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Ceramidas/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Vacúolos/ultraestrutura
10.
Plant Cell ; 22(4): 1344-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20435907

RESUMO

Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.


Assuntos
Arabidopsis/metabolismo , Corpos Multivesiculares/metabolismo , Rede trans-Golgi/metabolismo , Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Endocitose , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Quinases/metabolismo , Transporte Proteico
11.
BMC Plant Biol ; 12: 164, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22970698

RESUMO

BACKGROUND: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. RESULTS: Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. CONCLUSIONS: Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route, but it also mediates vacuolar delivery if displayed at the Golgi. In both cases, ubiquitin-tagged proteins travel via early endosomes and multivesicular bodies to the lytic vacuole. This suggests that vacuolar degradation of ubiquitinated proteins is not restricted to PM proteins but might also facilitate the turnover of membrane proteins in the early secretory pathway.


Assuntos
Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Ubiquitina/metabolismo , Vacúolos/metabolismo , Arabidopsis/metabolismo , Western Blotting , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Ubiquitina/química
12.
J Biol Chem ; 285(23): 18113-21, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20378538

RESUMO

Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 A resolution revealed the typical beta-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Receptores de Reconhecimento de Padrão/metabolismo , Resposta a Proteínas não Dobradas , Imuno-Histoquímica , Modelos Biológicos , Mutação , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Protoplastos/metabolismo , RNA Mensageiro/metabolismo , Frações Subcelulares
13.
Plant J ; 61(1): 107-21, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19796370

RESUMO

Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor-ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit. To analyse retromer-mediated VSR recycling, we have used a combination of immunoelectron and fluorescence microscopy to localize the retromer components sorting nexin 1 (SNX1) and sorting nexin 2a (SNX2a) and the vacuolar sorting protein VPS29p. All retromer components localize to the trans-Golgi network (TGN), which is considered to represent the early endosome of plants. In addition, we show that inhibition of retromer function in vivo by expression of SNX1 or SNX2a mutants as well as transient RNAi knockdown of all sorting nexins led to accumulation of the VSR BP80 at the TGN. Quantitative protein transport studies and live-cell imaging using fluorescent vacuolar cargo molecules revealed that arrival of these VSR ligands at the vacuole is not affected under these conditions. Based on these findings, we propose that the TGN is the location of retromer-mediated recycling of VSRs, and that transport towards the lytic vacuole downstream of the TGN is receptor-independent and occurs via maturation, similar to transition of the early endosome into the late endosome in mammalian cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Protoplastos/metabolismo , Interferência de RNA , Nexinas de Classificação , Proteínas de Transporte Vesicular/genética , Rede trans-Golgi/genética
14.
Traffic ; 9(10): 1629-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18764818

RESUMO

Overexpression of the Golgi and endoplasmic reticulum (ER) syntaxins SYP31 and SYP81 strongly inhibits constitutive secretion. By comparing the secreted reporter alpha-amylase with the ER-retained reporter alpha-amylase-HDEL, it was concluded that SYP81 overexpression inhibits both retrograde and anterograde transport, while SYP31 overexpression mainly affected anterograde transport. Of the other interacting SNAREs investigated, only the overexpression of MEMB11 led to an inhibition of protein secretion. Although the position of a fluorescent tag does not influence the correct localization of the fusion protein, only N-terminal-tagged SYP31 retained the ability of the untagged SNARE to inhibit transport. C-terminal-tagged SYP31 failed to exhibit this effect. Overexpression of both wild-type and N-terminal-tagged syntaxins caused standard Golgi marker proteins to redistribute into the ER. Nevertheless, green fluorescent protein (GFP)-SYP31 was still visible as fluorescent punctae, which, unlike SYP31-GFP, were resistant to brefeldin A treatment. Immunogold electron microscopy showed that endogenous SYP81 is not only present at the ER but also in the cis Golgi, indicating that this syntaxin cycles between these two organelles. However, when expressed at non-inhibitory levels, YFP-SYP81 was seen to locate principally to subdomains of the ER. These punctate structures were physically separated from the Golgi, suggesting that they might possibly reflect the position of ER import sites.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Via Secretória/fisiologia , Clonagem Molecular , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/fisiologia , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Complexo de Golgi/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Microscopia Imunoeletrônica , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plasmídeos , Transporte Proteico/fisiologia , Protoplastos/enzimologia , Protoplastos/metabolismo , Proteínas Qa-SNARE/biossíntese , Proteínas Qa-SNARE/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia , alfa-Amilases/metabolismo
15.
Mol Plant ; 11(4): 553-567, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29288738

RESUMO

Brassinosteroid (BR) hormone signaling controls multiple processes during plant growth and development and is initiated at the plasma membrane through the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) together with co-receptors such as BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). BRI1 abundance is regulated by endosomal recycling and vacuolar targeting, but the role of vacuole-related proteins in BR receptor dynamics and BR responses remains elusive. Here, we show that the absence of two DUF300 domain-containing tonoplast proteins, LAZARUS1 (LAZ1) and LAZ1 HOMOLOG1 (LAZ1H1), causes vacuole morphology defects, growth inhibition, and constitutive activation of BR signaling. Intriguingly, tonoplast accumulation of BAK1 was substantially increased and appeared causally linked to enhanced BRI1 trafficking and degradation in laz1 laz1h1 plants. Since unrelated vacuole mutants exhibited normal BR responses, our findings indicate that DUF300 proteins play distinct roles in the regulation of BR signaling by maintaining vacuole integrity required to balance subcellular BAK1 pools and BR receptor distribution.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais , Vacúolos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Transporte Proteico
16.
Dev Cell ; 43(3): 290-304.e4, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112850

RESUMO

The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes.


Assuntos
Arabidopsis/citologia , Polaridade Celular , Forma Celular/fisiologia , Parede Celular/metabolismo , Microtúbulos/metabolismo , Simulação por Computador , Modelos Biológicos , Células Vegetais , Folhas de Planta/citologia
17.
Methods Mol Biol ; 1459: 3-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27665548

RESUMO

Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas/metabolismo , Via Secretória , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Humanos , Transporte Proteico , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
18.
Nat Commun ; 7: 11710, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271794

RESUMO

ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane.


Assuntos
Ácidos/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Mitocôndrias/metabolismo , Desacopladores/farmacologia , Trifosfato de Adenosina/deficiência , Trifosfato de Adenosina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Organelas/efeitos dos fármacos , Organelas/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolonas/química , Quinolonas/farmacologia
19.
FEBS J ; 272(22): 5864-71, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16279950

RESUMO

Proton pump interactor, isoform 1 (PPI1) is a novel interactor of the C-terminus of Arabidopsis thaliana plasma membrane H(+)-ATPase (EC 3.6.3.6). We produced two fusion proteins consisting of, respectively, the first 88 amino acids or the entire protein deleted of the last 24 hydrophobic amino acids, and we show that the latter protein has a threefold higher affinity for the H(+)-ATPase. PPI1-induced stimulation of H(+)-ATPase activity dramatically decreased with the increase of pH above pH 6.8, but became largely pH-independent when the enzyme C-terminus was displaced by fusicoccin-induced binding of 14-3-3 proteins. The latter treatment did not affect PPI1 affinity for the H(+)-ATPase. These results indicate that PPI1 can bind the H(+)-ATPase independently of the C-terminus conformation, but is not able to suppress the C-terminus auto-inhibitory action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas 14-3-3/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Glicosídeos/farmacologia , Histidina/química , Concentração de Íons de Hidrogênio , Modelos Biológicos , Micotoxinas/farmacologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Front Plant Sci ; 5: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24550928

RESUMO

The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA