Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3942-3952, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350647

RESUMO

Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Tensoativos/análise , Água , Fluorocarbonos/análise , Ácidos Carboxílicos/análise , Espectrometria de Massas
2.
Indoor Air ; 32(11): e13163, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437679

RESUMO

During wildfire smoke events public health agencies release advisories to stay indoors, close doors and windows, and operate a portable air cleaner (PAC). The do-it-yourself (DIY) air cleaner consisting of a box fan and a furnace filter is a widely used low-cost alternative to commercial PACs because of its increased accessibility. In this study, we evaluate the clean air delivery rate (CADR) of different DIY air cleaner designs for reducing simulated wildfire smoke and identify operating parameters that may impact their performance and use. The simplest formulation of a DIY air cleaner (box fan with taped on minimum effectiveness reporting value - [MERV] 13 furnace filter) had a CADR of 111.2 ± 1.3 ft3 /min (CFM). Increasing the fan flow by changing the fan type, increasing the fan setting, or reducing the pressure drop across the filtering surface increased the CADR. Large increases in CADR could be obtained by using a shroud (40%), using a 4″ thick filter (123%) using two filters in a wedge shape (137%), or using four filters in a Corsi-Rosenthal (CR) box design (261%). The CADR was greatly reduced with filters heavily loaded with smoke, pointing to the need for frequent filter changes during smoke events.


Assuntos
Poluição do Ar em Ambientes Fechados , Incêndios Florestais , Fumaça/análise , Poluição do Ar em Ambientes Fechados/análise , Ambiente Controlado , Habitação
3.
Environ Sci Technol ; 55(22): 15333-15342, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34714622

RESUMO

In 2018, the International Organization for Standardization (ISO) 19867-1 "Harmonized laboratory test protocols" were released for establishing improved quality and comparability for data on cookstove air pollutant emissions, efficiency, safety, and durability. This is the first study that compares emissions [carbon dioxide, carbon monoxide, total hydrocarbons, methane, nitrogen oxides, fine particulate matter (PM2.5), organic carbon, elemental carbon, and ultrafine particles] and efficiency data between the ISO protocol and the Water Boiling Test (WBT). The study examines six stove/fuel combinations [liquefied petroleum gas (LPG), pellet, wood fan, wood rocket, three stone fire, and charcoal] tested in the same US EPA laboratory. Evaluation of the ISO protocol shows improvements over previous test protocols and that results are relatively consistent with former WBT data in terms of tier ratings for emissions and efficiency, as defined by the ISO 19867-3 "Voluntary Performance Targets." Most stove types remain similarly ranked using ISO and WBT protocols, except charcoal and LPG are in higher PM2.5 tiers with the ISO protocol. Additionally, emissions data including polycyclic aromatic hydrocarbons are utilized to compare between the ISO and Firepower Sweep Test (FST) protocols. Compared to the FST, the ISO protocol results in generally higher PM2.5 tier ratings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Utensílios Domésticos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Material Particulado/análise , Padrões de Referência
5.
Atmos Environ X ; 20: 1-8, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269205

RESUMO

Wildland fires, which includes both wild and prescribed fires, and agricultural fires in sum are one of the largest sources of fine particulate matter (PM2.5) emissions to the atmosphere in the United States (US). Although wildland fire PM2.5 emissions are primarily composed of carbonaceous material, many other elements including trace metals are emitted at very low levels. Lead (Pb) is a US Environmental Protection Agency (EPA) criteria pollutant that is ubiquitous in the environment at very low concentrations including in biomass that can burn and emit Pb into the atmosphere. Although fires may emit Pb at very low concentrations, they can be a source of sizeable Pb emissions to the atmosphere because of the large quantity of PM2.5 emitted from fires. In this work, we measure Pb concentrations in unburned biomass, ash/residues, and particulate matter <2.5 µm (PM2.5) emitted from wildland fires using in-field measurements near prescribed fires and in laboratory simulations. Emission factors were calculated for multiple biomass types, representative of different regions of the US including grasslands in Oregon and Kansas; forest litter from Oregon, Montana, Minnesota, and North Carolina; and peat cores from Minnesota. Most of the biomass Pb remains in the ash/residues. The small percentage (<10%) that is emitted in PM2.5 is dependent on the biomass Pb concentration. The emissions factors measured here are several orders of magnitude lower than some reported in the literature, but the studies exhibited a wide range of values, which may be due to large uncertainties in the measurement method rather than differences in Pb emissions. Wildland fires are expected to increase in size and frequency in future years and these new emission factors can be used to improve the accuracy of Pb emissions estimates and better constrain our understanding of Pb emissions to the atmosphere.

6.
ACS ES T Eng ; 3(9): 1308-1317, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989445

RESUMO

The destruction of per- and polyfluoroalkyl substances (PFAS) is critical to ensure effective remediation of PFAS contaminated matrices. The destruction of hazardous chemicals within incinerators and other thermal treatment processes has historically been determined by calculating the destruction efficiency (DE) or the destruction and removal efficiency (DRE). While high DEs, >99.99%, are deemed acceptable for most hazardous compounds, many PFAS can be converted to other PFAS at low temperatures resulting in high DEs without full mineralization and the potential release of the remaining fluorocarbon portions to the environment. Many of these products of incomplete combustion (PICs) are greenhouse gases, most have unknown toxicity, and some can react to create new perfluorocarboxylic acids. Experiments using aqueous film forming foam (AFFF) and a pilot-scale research combustor varied the combustion environment to determine if DEs indicate PFAS mineralization. Several operating conditions above 1090 °C resulted in high DEs and few detectable fluorinated PIC emissions. However, several conditions below 1000 °C produced DEs >99.99% for the quantifiable PFAS and mg/m3 emission concentrations of several non-polar PFAS PICs. These results suggest that DE alone may not be the best indication of total PFAS destruction, and additional PIC characterization may be warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA