Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 287(44): 37030-41, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22969084

RESUMO

The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler's diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were K(m)(NAD(+)) = 6 µM, K(m)(actin) = 24 µM, and k(cat) = 22 s(-1). VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC(50) = 20 µM). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.


Assuntos
ADP Ribose Transferases/química , Actinas/química , Aeromonas hydrophila/enzimologia , Proteínas de Bactérias/química , Toxinas Bacterianas/química , ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/biossíntese , ADP Ribose Transferases/genética , Citoesqueleto de Actina/metabolismo , Motivos de Aminoácidos , Apoptose , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Domínio Catalítico , Forma Celular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Células HeLa , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Saccharomyces cerevisiae , Propriedades de Superfície
2.
J Biol Chem ; 285(18): 13525-34, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20181945

RESUMO

Photorhabdus luminescens is a pathogenic bacterium that produces many toxic proteins. The mono-ADP-ribosyltransferases (mARTs) are an enzyme class produced by numerous pathogenic bacteria and participate in disease in plants and animals, including humans. Herein we report a novel mART from P. luminescens called Photox. This 46-kDa toxin shows high homology to other actin-targeting mARTs in hallmark catalytic regions and a similar core catalytic fold. Furthermore, Photox shows in vivo cytotoxic activity against yeast, with protection occurring when catalytic residues are substituted with alanine. In vitro, enzymatic activity (k(cat), 1680 +/- 75 min(-1)) is higher than that of the related iota toxin, and diminishes by nearly 14,000-fold following substitution of the catalytic Glu (E355A). This toxin specifically ADP-ribosylates monomeric alpha-skeletal actin and nonmuscle beta- and gamma-actin at Arg(177), inhibiting regular polymerization of actin filaments. These results indicate that Photox is indeed an ADP-ribosyltransferase, making it the newest member of the actin-targeting mART family.


Assuntos
ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Toxinas Bacterianas/metabolismo , Photorhabdus/enzimologia , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Galinhas , Photorhabdus/genética , Photorhabdus/patogenicidade , Doenças das Plantas/microbiologia
3.
Biochemistry ; 49(41): 8944-54, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20795716

RESUMO

Actin filament subunit interfaces are required for the proper interaction between filamentous actin (F-actin) and actin binding proteins (ABPs). The production of small F-actin complexes mimicking such interfaces would be a significant advance toward understanding the atomic interactions between F-actin and its many binding partners. We produced actin lateral dimers and trimers derived from F-actin and rendered polymerization-deficient by ADP-ribosylation of Arg-177. The degree of modification resulted in a moderate reduction in thermal stability. Calculated hydrodynamic radii were comparable to theoretical values derived from recent models of F-actin. Filament capping capabilities were retained and yielded pointed-end dissociation constants similar those of wild-type actin, suggesting native or near-native interfaces on the oligomers. Changes in DNase I binding affinity under low and high ionic strength suggested a high degree of conformational flexibility in the dimer and trimer. Polymer nucleation activity was lost upon ADP-ribosylation and rescued upon enzyme-mediated deADP-ribosylation, or upon binding to gelsolin, suggesting that interactions with actin binding proteins can overcome the inhibiting activities of ADP-ribosylation. The combined strategy of chemical cross-linking and ADP-ribosylation provides a minimalistic and reversible approach to engineering polymerization-deficient F-actin oligomers that are able to act as F-actin binding protein scaffolds.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Difosfato Ribose/metabolismo , Multimerização Proteica/fisiologia , Citoesqueleto de Actina/química , Actinas/química , Adenosina Difosfato Ribose/química , Animais , Bovinos , Galinhas , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA