Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Bacteriol ; 197(2): 240-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349159

RESUMO

Proper expression of the dev operon is important for normal development of Myxococcus xanthus. When starved, these bacteria coordinate their gliding movements to build mounds that become fruiting bodies as some cells differentiate into spores. Mutations in the devTRS genes impair sporulation. Expression of the operon occurs within nascent fruiting bodies and depends in part on C signaling. Here, we report that expression of the dev operon, like that of several other C-signal-dependent genes, is subject to combinatorial control by the transcription factors MrpC2 and FruA. A DNA fragment upstream of the dev promoter was bound by a protein in an extract containing MrpC2, protecting the region spanning positions -77 to -54. Mutations in this region impaired binding of purified MrpC2 and abolished developmental expression of reporter fusions. The association of MrpC2 and/or its longer form, MrpC, with the dev promoter region depended on FruA in vivo, based on chromatin immunoprecipitation analysis, and purified FruA appeared to bind cooperatively with MrpC2 to DNA just upstream of the dev promoter in vitro. We conclude that cooperative binding of the two proteins to this promoter-proximal site is crucial for dev expression. 5' deletion analysis implied a second upstream positive regulatory site, which corresponded to a site of weak cooperative binding of MrpC2 and FruA and boosted dev expression 24 h into development. This site is unique among the C-signal-dependent genes studied so far. Deletion of this site in the M. xanthus chromosome did not impair sporulation under laboratory conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/metabolismo , Óperon/genética , Proteínas de Bactérias/genética , Mutação , Myxococcus xanthus/genética
2.
J Bacteriol ; 193(7): 1681-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257775

RESUMO

Upon starvation, a dense population of rod-shaped Myxococcus xanthus bacteria coordinate their movements to construct mounds in which some of the cells differentiate to spherical spores. During this process of fruiting body formation, short-range C-signaling between cells regulates their movements and the expression of genes important for sporulation. C-signaling activates FruA, a transcription factor that binds cooperatively with another transcription factor, MrpC2, upstream of the fmgA and fmgBC promoters, activating transcription. We have found that a third C-signal-dependent gene, herein named fmgD, is subject to combinatorial control by FruA and MrpC2. The two proteins appear to bind cooperatively upstream of the fmgD promoter and activate transcription. FruA binds proximal to the fmgD promoter, as in the fmgBC promoter region, whereas MrpC2 binds proximal to the fmgA promoter. A novel feature of the fmgD promoter region is the presence of a second MrpC2 binding site partially overlapping the promoter and therefore likely to mediate repression. The downstream MrpC2 site appears to overlap the FruA site, so the two transcription factors may compete for binding, which in both cases appears to be cooperative with MrpC2 at the upstream site. We propose that binding of MrpC2 to the downstream site represses fmgD transcription until C-signaling causes the concentration of active FruA to increase sufficiently to outcompete the downstream MrpC2 for cooperative binding with the upstream MrpC2. This would explain why fmgD transcription begins later during development and is more dependent on C-signaling than transcription of fmgA and fmgBC.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Tempo
3.
Infect Immun ; 78(10): 4110-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20660607

RESUMO

Burkholderia cenocepacia AU1054 is an opportunistic pathogen isolated from the blood of a person with cystic fibrosis. AU1054 is a multihost pathogen causing rapid pathogenicity to Caenorhabditis elegans nematodes. Within 24 h, AU1054 causes greater than 50% mortality, reduced growth, emaciated body, distended intestinal lumen, rectal swelling, and prolific infection of the nematode intestine. To determine virulence mechanisms, 3,000 transposon mutants were screened for attenuated virulence in nematodes. Fourteen virulence-attenuated mutants were isolated, and the mutant genes were identified. These genes included paaA, previously identified as being required for full virulence of B. cenocepacia K56-2. Six mutants were restored in virulence by complementation with their respective wild-type gene. One of these contained an insertion in gspJ, predicted to encode a pseudopilin component of the type 2 secretion system (T2SS). Nematodes infected with AU1054 gspJ had fewer bacteria present in the intestine than those infected with the wild type but still showed rectal swelling. The gspJ mutant was also defective in pathogenicity to onion and in degradation of polygalacturonic acid and casein. This result differs from previous studies where no or little role was found for T2SS in Burkholderia virulence, although virulence factors such as zinc metalloproteases and polygalacturonase are known to be secreted by the T2SS. This study highlights strain specific differences in B. cenocepacia virulence mechanisms important for understanding what enables environmental microbes to function as opportunistic pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo Burkholderia cepacia/metabolismo , Complexo Burkholderia cepacia/patogenicidade , Animais , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Complexo Burkholderia cepacia/genética , Caenorhabditis elegans/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno , Mutação , Cebolas/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Virulência
4.
Appl Environ Microbiol ; 75(16): 5250-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542323

RESUMO

A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.


Assuntos
Complexo Burkholderia cepacia/patogenicidade , Caenorhabditis elegans/microbiologia , Fibrose Cística/microbiologia , Variação Genética , Interações Hospedeiro-Patógeno , Cebolas/microbiologia , Animais , Antibiose , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/genética , Humanos , Michigan , Doenças das Plantas/microbiologia , Rhizoctonia/crescimento & desenvolvimento , Microbiologia do Solo
5.
J Med Microbiol ; 64(8): 862-868, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26293112

RESUMO

The report of four novel mammalian pathogenic species of the genus Lagenidium prompted us to study the use of biochemical assays to differentiate the Oomycota mammalian pathogens Pythium insidiosum and Lagenidium spp. We investigated the reaction of 23 Lagenidium and eight Pythium species in various biochemical assays. Because the morphological features of the Oomycota species are similar to those of species in the Entomophthoramycota and Mucormycota, five fungal species with coenocytic hyphae were also included. We found that mammalian and plant isolates of Pythium spp. all hydrolysed sucrose, but Lagenidium species and the fungal strains did not. In addition, both Pythium spp. and Lagenidium spp. were found to be maltose-positive, whereas fungal strains did not hydrolyse this sugar. The fungal species and thermo-sensitive Lagenidium giganteum and Lagenidium humanum were urease-negative, but the mammalian Lagenidium spp. and Pythium spp. hydrolysed urea within 24  h. These findings suggest these assays can be used for the presumptive differentiation of mammalian Oomycota species in the laboratory.


Assuntos
Lagenidium/classificação , Lagenidium/isolamento & purificação , Programas de Rastreamento/métodos , Técnicas Microbiológicas/métodos , Pythium/classificação , Pythium/isolamento & purificação , Animais , Metabolismo dos Carboidratos , Humanos , Lagenidium/crescimento & desenvolvimento , Lagenidium/metabolismo , Mamíferos , Plantas , Pythium/crescimento & desenvolvimento , Pythium/metabolismo , Urease/análise
6.
Proc Natl Acad Sci U S A ; 104(19): 7969-74, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17470804

RESUMO

Myxococcus xanthus is a bacterium that undergoes multicellular development. C-signaling influences gene expression and movement of cells into aggregates. Expression of the dev operon, which includes genes essential for efficient sporulation, depends in part on C-signaling and reaches its highest level in cells within aggregates, ensuring that spores form within fruiting bodies. Here, an upstream DNA element was found to be essential for dev promoter activity and was bound by FruA, a response regulator in the C-signaling pathway. A second positive regulatory element, located approximately 350 bp downstream of the dev transcriptional start site, was bound by LadA, a newly identified transcription factor in the LysR family. Typically, LysR-type transcription factors bind upstream of the promoter and activate transcription in response to a coinducer. LadA appears to activate transcription from an unusual location for a LysR family member and likely subjects dev transcription to a different cue than does FruA. A ladA mutant exhibited similar developmental defects as dev mutants, suggesting that LadA may be devoted to dev regulation, unlike FruA, which regulates many developmental genes. FruA and LadA act on a regulatory region spanning >400 bp to bring about proper temporal and spatial expression of the dev operon, resembling the regulation of developmental genes in multicellular eukaryotes.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Genes Reguladores/fisiologia , Myxococcus xanthus/genética , Fatores de Transcrição/fisiologia , Óperon , Regiões Promotoras Genéticas , Esporos Bacterianos/fisiologia
7.
J Bacteriol ; 189(10): 3738-50, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17369305

RESUMO

Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.


Assuntos
Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/genética , Óperon/genética , Esporos Bacterianos/genética , Sequência de Bases , Análise Mutacional de DNA , Deleção de Genes , Teste de Complementação Genética , Dados de Sequência Molecular , Myxococcus xanthus/crescimento & desenvolvimento , Fases de Leitura Aberta , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Mensageiro/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
8.
J Bacteriol ; 188(2): 515-24, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16385042

RESUMO

C signaling plays a key role in coordinating cell movement and differentiation during the multicellular developmental process of Myxococcus xanthus. C signaling regulates expression of genes induced after about 6 h into development, when cells are forming mounds. One gene whose expression depends absolutely on C signaling was identified by insertion of a transposable element at site Omega4406 which generated a transcriptional fusion between lacZ and an upstream promoter. We have investigated regulation of the Omega4406 promoter. A 5' deletion revealed a negative regulatory element located between bp -533 and -100 relative to the transcriptional start site. In the absence of this element, the promoter was still developmentally regulated but about fourfold more active. Also, the truncated promoter region retained normal dependence on two developmental regulators, FruA and DevS, but lost its dependence on the C-signaling protein CsgA. We infer that C signaling partially overcomes the negative effect of the upstream element on activity of the Omega4406 promoter. Deletion of downstream DNA between bp 50 and 140 caused a threefold loss in expression, suggesting that a positive regulatory element lies in this region. Additional positive and negative regulatory elements are present in the region from bp -69 to -49, based on the effects of multiple-base-pair mutations. Within this region, a 5-bp element and a C-box-like sequence resemble sequences found in other developmentally regulated M. xanthus promoter regions, but the effects of single-base-pair changes in these sequences suggest that each functions uniquely. We conclude that regulation of the Omega4406 promoter involves multiple positive and negative regulatory elements located upstream and downstream of the region typically bound by RNA polymerase.


Assuntos
Myxococcus xanthus/genética , Regiões Promotoras Genéticas/genética , Proteínas de Bactérias/fisiologia , Divisão Celular , Mutação , Myxococcus xanthus/citologia , Protamina Quinase/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia
9.
J Bacteriol ; 188(9): 3246-56, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16621817

RESUMO

Starvation-induced development of Myxococcus xanthus is an excellent model for biofilm formation because it involves cell-cell signaling to coordinate formation of multicellular mounds, gene expression, and cellular differentiation into spores. The role of sigma(D), an alternative sigma factor important for viability in stationary phase and for stress responses, was investigated during development by measuring signal production, gene expression, and sporulation of a sigD null mutant alone and upon codevelopment with wild-type cells or signaling mutants. The sigD mutant responded to starvation by inducing (p)ppGpp synthesis normally but was impaired for production of A-signal, an early cell density signal, and for production of the morphogenetic C-signal. Induction of early developmental genes was greatly reduced, and expression of those that depend on A-signal was not restored by codevelopment with wild-type cells, indicating that sigma(D) is needed for cellular responses to A-signal. Despite these early developmental defects, the sigD mutant responded to C-signal supplied by codeveloping wild-type cells by inducing a subset of late developmental genes. sigma(D) RNA polymerase is dispensable for transcription of this subset, but a distinct regulatory class, which includes genes essential for sporulation, requires sigma(D) RNA polymerase or a gene under its control, cell autonomously. The level of sigD transcript in a relA mutant during growth is much lower than in wild-type cells, suggesting that (p)ppGpp positively regulates sigD transcription in growing cells. The sigD transcript level drops in wild-type cells after 20 min of starvation and remains low after 40 min but rises in a relA mutant after 40 min, suggesting that (p)ppGpp negatively regulates sigD transcription early in development. We conclude that sigma(D) synthesized during growth occupies a position near the top of a regulatory hierarchy governing M. xanthus development, analogous to sigma factors that control biofilm formation of other bacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/fisiologia , Fator sigma/fisiologia , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Guanosina Tetrafosfato/fisiologia , Myxococcus xanthus/genética , Myxococcus xanthus/crescimento & desenvolvimento , Óperon , Fosfotransferases/metabolismo , Fator sigma/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Tempo
10.
J Bacteriol ; 187(12): 4149-62, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15937177

RESUMO

When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site omega4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream omega4406 promoter. In this study, the omega4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5' end of omega4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Omega4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the omega4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac omega4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal omega4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position-dependent effect on gene expression attributable to a DNA segment outside the promoter region.


Assuntos
DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Myxococcus xanthus/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Bacterianos , Dados de Sequência Molecular , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Fatores de Tempo
11.
J Bacteriol ; 185(4): 1405-14, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12562812

RESUMO

Cell contact-mediated C signaling coordinates morphogenesis and gene expression during development of Myxococcus xanthus. One promoter that depends on C signaling for transcription lies upstream of Omega4403, the site of a Tn5 lac insertion in the genome. The Omega4403 promoter has a C-box sequence centered at -49 bp that matches the consensus 5'-CAYYCCY-3', which is found in several C-signal-dependent promoters. Mutational analysis of the Omega4403 promoter region was performed to test the importance of the C box and to identify other cis-acting elements. A 6-bp change in the -10 region eliminated promoter activity, but a 6-bp change in the -35 region decreased activity only about twofold. Certain single-base-pair changes in the C box centered at -49 bp abolished promoter activity, establishing the importance of this sequence element. Single-base-pair changes in a C-box-like sequence centered at -77 bp also abolished promoter activity, but the pattern of mutational effects was different from that for the C box centered at -49 bp. Additional single-base-pair changes indicated that all 10 bp from -79 to -70 bp are important for Omega4403 promoter activity. Mutations at -59, -61, -62, and -63 bp also abolished promoter activity, defining a 5-bp element from -63 to -59 bp. This 5-bp element is separated from the 10-bp element (i.e., -79 to -70 bp) by 6 bp that can be changed without loss of promoter activity. Likewise, the 5 bp between the 5-bp element and the C box can be changed without loss of activity, but deletion of these 5 bp abolished activity, indicating that spacing is important. Sequences similar to the 5- and 10-bp elements, as well as the C box, are present in other C-signal-dependent promoters, suggesting some similarity in the regulatory mechanisms, but there are also indications that these cis elements do not function identically in the different promoters.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/crescimento & desenvolvimento , Transdução de Sinais , Sequência de Bases , Análise Mutacional de DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA