Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Angew Chem Int Ed Engl ; 62(18): e202218421, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36856155

RESUMO

The development of solid-state proton conductors with high proton conductivity at low temperatures is crucial for the implementation of hydrogen-based technologies for portable and automotive applications. Here, we report on the discovery of a new crystalline metal acid triphosphate, ZrH5 (PO4 )3 (ZP3), which exhibits record-high proton conductivity of 0.5-3.1×10-2  S cm-1 in the range 25-110 °C in anhydrous conditions. This is the highest anhydrous proton conductivity ever reported in a crystalline solid proton conductor in the range 25-110 °C. Superprotonic conductivity in ZP3 is enabled by extended defective frustrated hydrogen bond chains, where the protons are dynamically disordered over two oxygen centers. The high proton conductivity and stability in anhydrous conditions make ZP3 an excellent candidate for innovative applications in fuel cells without the need for complex water management systems, and in other energy technologies requiring fast proton transfer.

2.
Inorg Chem ; 61(4): 2251-2264, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35044759

RESUMO

New insoluble layered zirconium phosphate carboxyaminophosphonates (ZPs), with the general formula Zr2(PO4)H5[(O3PCH2)2N(CH2)nCOO]2·mH2O (n = 3, 4, and 5), have been prepared and characterized. The crystal structure for n = 3 and 4 samples was determined ab initio from X-ray powder diffraction data. The structure for n = 3 was monoclinic in space group C2/c with the following unit cell parameters: a = 34.346(1) Å, b = 8.4930(2) Å, c = 9.0401(2) Å, and ß = 97.15(1)°. The structure for n = 4 was triclinic in space group P1̅ with the following unit cell parameters: a = 17.9803(9) Å, b = 8.6066(4) Å, c = 9.0478(3) Å, α = 90.466(3)°, ß = 94.910(4)°, and γ = 99.552(4)°. The two structures had the same connectivity as Zr phosphate glycine diphosphonate (n = 1), as previously reported. By intercalation of short amines, these layered compounds were exfoliated in single lamella or packets of a few lamellae, which formed colloidal dispersions in water. After a thorough characterization, the dispersed lamellae were functionalized with Ag nanoparticles, which were grown in situ on the surface of exfoliated lamellae. Finally, their antimicrobial activity was tested on several Gram-positive and Gram-negative bacteria. All of these systems were found to be active against the four pathogens most frequently isolated from orthopedic prosthetic infections and often causative of nosocomial infections. Interestingly, they were found to express powerful inhibitory activity even against bacterial strains exhibiting a relevant profile of antibiotic resistance such as Staphylococcus aureus ATCC 700699.


Assuntos
Prata
3.
Molecules ; 27(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35335359

RESUMO

The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the "block allocation group" (BAG) mode. Here, we present the recently implemented "historical materials BAG": a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.


Assuntos
Software , Síncrotrons , Cristalografia por Raios X , Difração de Raios X
4.
Inorg Chem ; 55(12): 6278-85, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27254781

RESUMO

Two new layered zirconium phosphonates functionalized with amino groups were synthesized starting from aminomethylphosphonic acid in the presence of different mineralizers, and their structures were solved from powder X-ray diffraction data. Their topologies are unprecedented in zirconium phosphonate chemistry: the first, of formula ZrH[F3(O3PCH2NH2)], prepared in the presence of hydrofluoric acid, features uncommon ZrO2F4 units and a remarkable thermal stability; the second, of formula Zr2H2[(C2O4)3(O3PCH2NH2)2]·2H2O, prepared in the presence of oxalic acid, is based on ZrO7 units with oxalate anions coordinated to the metal atom, which were never observed before in any zirconium phosphonate. In addition, the structure of another compound based on (2-aminoethyl)phosphonic acid is reported, which was the object of a previously published study. This compound has layered α-type structure with -NH3(+) groups located in the interlayer space. All of the reported compounds were further characterized by means of vibrational spectroscopy, which provided important information on fine structural details that cannot be deduced from the powder X-ray diffraction data.

5.
Inorg Chem ; 54(18): 9146-53, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26322869

RESUMO

Nanosized α-zirconium phosphate, α-ZrP, undergoes a phase transition at 120 °C, which is not observed with microcrystalline α-ZrP in the same conditions, and which leads to a new 3D phase. The new compound, with formula Zr(HPO4)2 (τ'-ZrP), consists of cubelike nanoparticles and has a tetragonal unit cell (space group P43212, a = 7.955 Å, c = 10.744 Å). The structure of τ'-ZrP is in close relationship with that of the already known τ-ZrP. Both structures are made of packed chains of eight-membered rings, composed of Zr atoms connected to bridging HPO4 groups. The main difference between the two structures concerns the different orientation of the uncoordinated P-OH groups, pointing into the channels. The in situ XRPD analysis on nanosized α-ZrP, performed at 120 °C as a function of time, provided information about the kinetics of the formation of τ'-ZrP, showing that the α-ZrP phase is directly transformed into τ'-ZrP. Moreover, τ'-ZrP is converted into α-ZrP at room temperature in the presence of water vapor. It was proved that the free phosphoric acid, which is originally present in small amounts in nanosized α-ZrP and τ'-ZrP, is necessary for the interconversion between the two phases. As a matter of fact, the removal of phosphoric acid, by washing α-ZrP and τ'-ZrP with anhydrous ethanol, inhibits the above conversion.


Assuntos
Nanopartículas/química , Transição de Fase , Zircônio/química , Catálise , Cristalografia por Raios X , Ácidos Fosfóricos/química
6.
Inorg Chem ; 53(24): 13220-6, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25423946

RESUMO

A novel mixed zirconium phosphate/phosphonate based on glyphosine, of formula Zr2(PO4)H5(L)2·H2O [L = (O3PCH2)2NCH2COO], was synthesized in mild conditions. The compound has a layered structure that was solved ab initio from laboratory PXRD data. It crystallizes in the monoclinic C2/c space group with the following cell parameters: a = 29.925(3), b = 8.4225(5), c = 9.0985(4) Å, and ß = 98.474(6)°. Phosphate groups are placed inside the sheets and connect the zirconium atoms in a tetradentate fashion, while uncoordinated carboxylate and P-OH phosphonate groups are exposed on the layer surface. Due to the presence of these acidic groups, the compound showed remarkable proton conductivity properties, which were studied in a wide range of temperature and relative humidity (RH). The conductivity is strongly dependent on RH and reaches 1 × 10(-3) S cm(-1) at 140 °C and 95% RH. At this RH, the activation energy of conduction is 0.15 eV in the temperature range 80-140 °C. The similarities of this structure with related structures already reported in the literature were also discussed.


Assuntos
Ácidos Carboxílicos/química , Glicina/análogos & derivados , Organofosfonatos/química , Compostos Organofosforados/química , Zircônio/química , Cristalografia por Raios X , Glicina/química , Modelos Moleculares , Difração de Pó , Prótons
7.
Dalton Trans ; 53(30): 12543-12553, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39012300

RESUMO

Layered double hydroxides (LDHs) are a class of layered solids applied in many application fields. The study of synthetic methods able to control the interlayer composition and morphology of LDH is an open issue. The urea method, which exploits the thermal decomposition of urea, is known for yielding highly crystalline LDH in the carbonate form. This form is highly stable and, to replace carbonate ions with more easily exchangeable anions, a second step is required. In this work, we modified the urea method to obtain MgAl and ZnAl LDH in the chloride or nitrate form through a one-step synthesis. The effects of the urea/(Al + M(II)) molar ratio (R), reaction time and metal salt concentrations were deeply investigated. We found that LDH in chloride and nitrate forms can be prepared from solutions of metal salts not exceeding 1 M by adjusting R and maintaining the reaction time at 48 hours. The morphology of these products was found to depend on the R value and on the metal salts used in the synthesis. A high R value and nitrate salts favoured the formation of sand-rose crystals, while chloride salts induced the formation of plate-like crystals. The crystal growth mechanism and the parameters influencing the morphology are discussed with reference to ZnAl LDH by monitoring the synthesis over time.

8.
Chem Sci ; 15(4): 1348-1363, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274069

RESUMO

Despite substantial advancements in the field of the electrocatalytic oxygen evolution reaction (OER), the efficiency of earth-abundant electrocatalysts remains far from ideal. The difficulty stems from the complex nature of the catalytic system, which limits our fundamental understanding of the process and thus the possibility of a rational improvement of performance. Herein, we shed light on the role played by the tunable 3d configuration of the metal centers in determining the OER catalytic activity by combining electrochemical and spectroscopic measurements with an experimentally validated computational protocol. One-dimensional coordination polymers based on Fe, Co and Ni held together by an oxonato linker were selected as a case study because of their well-defined electronic and geometric structure in the active site, which can be straightforwardly correlated with their catalytic activity. Novel heterobimetallic coordination polymers were also considered, in order to shed light on the cooperativity effects of different metals. Our results demonstrate the fundamental importance of electronic structure effects such as metal spin and oxidation state evolutions along the reaction profile to modulate ligand binding energies and increase catalyst efficiency. We demonstrated that these effects could in principle be exploited to reduce the overpotential of the electrocatalytic OER below its theoretical limit, and we provide basic principles for the development of coordination polymers with a tailored electronic structure and activity.

9.
Appl Spectrosc ; : 37028241243375, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567433

RESUMO

Lead-calcium phosphates are unusual compounds sometimes found in different kinds of cultural heritage objects. Structural and physicochemical properties of this family of materials, which fall into the hydroxypyromorphite-hydroxyapatite solid solution, or (PbxCa1-x)5(PO4)3OH, have received considerable attention during the last few decades for promising applications in different fields of environmental and material sciences, but their diagnostic implications in the cultural heritage context have been poorly explored. This paper aims to provide a clearer understanding of the relationship between compositional and structural properties of the peculiar series of (PbxCa1-x)5(PO4)3OH solid solutions and to determine key markers for their proper non-destructive and non-invasive identification in cultural heritage samples and objects. For this purpose, a systematic study of powders and paint mock-ups made up of commercial and in-house synthesized (PbxCa1-x)5(PO4)3OH compounds with a different Pb2+/Ca2+ ratio was carried out via a multi-technique approach based on scanning electron microscopy, synchrotron radiation-based X-ray techniques, i.e., X-ray powder diffraction and X-ray absorption near edge structure spectroscopy at the Ca K- and P K-edges, and vibrational spectroscopy methods, i.e., micro-Raman and Fourier transform infrared spectroscopy. The spectral modifications observed in the hydroxypyromorphite-hydroxyapatite solid solution series are discussed, by assessing the advantages and disadvantages of the proposed techniques and by providing reference data and optimized approaches for future non-destructive and non-invasive applications to study cultural heritage objects and samples.

10.
Inorg Chem ; 52(20): 12131-9, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24074351

RESUMO

The reaction of two small phosphono-amino acids based on glycine (glyphosine and glyphosate) with zirconium under mild conditions led to the attainment of three related zirconium derivatives with 1D, 2D, and 3D structures of formulas ZrF[H3(O3PCH2NHCH2COO)2] (1), Zr3H8[(O3PCH2)2NCH2COO]4·2H2O (2), and Zr[(O3PCH2)(HO3PCH2)NHCH2COOH]2·2H2O (3), respectively, whose structures were solved by X-ray powder and single-crystal diffraction data. The glyphosate derivative has 1D ribbon-type structure whereas the dimensionality of the glyphosine-derived materials (2D and 3D) can be tuned by changing the synthesis conditions. The low-dimensional compounds (1 and 2) can be directly produced in the form of nanoparticles with different size and morphology whereas the 3D compound (3) has a higher crystallinity and can be obtained as single crystals with a prismatic shape. The different structural dimensionality reflects the shape and size of the crystals and also differently affects the proton conductivity properties, measured over a wide range of temperature at 95% relative humidity. Their high thermal and chemical stability together with the small size may promote their use as fillers for polymeric electrolyte membranes for fuel cells applications.

11.
Plants (Basel) ; 12(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36840287

RESUMO

Nanotechnology is rapidly gaining ground in crop protection, with the growing quest for sustainable nanopesticides and nanocarriers for plant pathogen management. Among them, cellulose nanocrystals (CNC) are emerging as innovative agrofood-waste-derived antimicrobial materials. In this work, new chemical and enzymatic CNC extraction methods from tomato harvest residues were evaluated. The obtained nanomaterials were characterized and tested for their antimicrobial properties on Pseudomonas syringae pv. tomato (Pto), the causal agent of bacterial speck disease on tomato. Both protocols were efficient. The enzymatic extraction method was greener, producing purer CNC at slightly lower yield. The obtained CNC, although they weakly inhibited cell growth and did not promote reactive oxygen species (ROS) formation, provoked bacterial aggregation and the inhibition of biofilm production and swimming motility. Both protocols produced CNC with similar morpho-chemical features, as well as promising antimicrobial activity against plant bacterial pathogens, suggesting their potential role in sustainable crop protection strategies. The new protocols could be a valuable alternative to conventional methods.

12.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839110

RESUMO

Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.

13.
Inorg Chem ; 51(4): 2560-8, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22316278

RESUMO

Molecular iodine was intercalated from nonaqueous solution into microsized ZnAl-layered double hydroxide (LDH) in the iodide form, generating the I(3)(-)/I(-) redox couple into the interlayer region. Chloroform, ethanol, acetonitrile, or diethyl ether were used as solvents to dissolve the molecular iodine. The intercalation compounds were characterized by thermogravimetric analysis, X-ray powder diffraction, UV-vis spectroscopy, and scanning and transmission electron microscopy. The stability of iodine-solvent adducts and the iodine concentration affected the LDH iodine loading, and samples with I(2)/I(-) molar ratio ranging from 0.14 to 0.82 were prepared. Nanosized, well dispersible LDH, synthesized by the urea method in water-ethylene glycol media, were also prepared and successfully functionalized with the I(3)(-)/I(-) redox couple applying the conditions optimized for the micrometric systems.

14.
Inorg Chem ; 50(21): 10835-43, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21970341

RESUMO

The reaction of N-(phosphonomethyl)piperidine and N,N'-bis(phosphonomethyl)bipiperidine with zirconium(IV) in hydrofluoric acid media led to the preparation of two new zirconium fluoride phosphonate derivatives with 1D and 2D structure, respectively. Their structures were solved ab initio from laboratory powder X-ray diffraction (PXRD) data. The monophosphonate derivative, with formula ZrF(2)(HF)(O(3)PCH(2)NC(5)H(10)), has a 1D structure (triclinic, space group P ̅1, a = 6.6484(3) Å, b = 7.1396(3) Å, c = 12.2320(6) Å, α = 77.932(4)°, ß = 87.031(6)°, γ = 78.953(5)°, V = 557.22(4) Å(3), and Z = 2) made of inorganic chains constituted from the connection of zirconium octahedra and phosphorus tetrahedra with the piperidine groups bonded on their external part. The diphosphonate derivative, with formula Zr(2)F(4)(HF)(2)(O(3)PCH(2))NC(10)H(18)N(CH(2)PO(3)), has a 2D structure (triclinic, space group P ̅1, a = 6.6243(3) Å, b = 7.2472(4) Å, c = 12.2550(7) Å, α = 102.879(4)°, ß = 100.29(1)°, γ = 101.287(7)°, V = 547.03(4) Å(3), and Z = 1) composed of the packing of covalent layers whose structure may be ideally obtained by the joining of adjacent chains of the 1D compound. In these hybrid layers, inorganic regions made of the connectivity of zirconium octahedra and phosphorus tetrahedra alternate with organic regions represented by the bipiperidine moieties. A section dedicated to vibrational spectroscopy analysis is also included, mainly devoted to clarify some issues not easily deducible on the basis of PXRD data and to describe the fluorine environment inside zirconium phosphonate structures.

15.
Inorg Chem ; 50(22): 11623-30, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22013996

RESUMO

Simple addition of zirconyl propionate to phosphoric acid in alcoholic media surprisingly led to the formation, in few minutes, of transparent gels containing solvent intercalated zirconium phosphate (ZrP) nanoparticles with hexagonal shape and a planar size of about 40 nm. With the help of elemental analysis, inductively coupled plasma-optical emission spectrometry (ICP-OES), and (31)P magic angle spinning (MAS) NMR, the nanoparticle composition was formulated as Zr(R)(w)(HPO(4))(x)(H(2)PO(4))(y), in which R can be an hydroxyl or a propionate group. The stoichiometric coefficients for propanol intercalated ZrP are x = 1.43, y = 0.83, and w = 0.32. Solvent elimination at 60 °C gave rise to an increase in the x value and a decrease in the y and w values. X-ray powder diffraction analysis and transmission electron microscopy (TEM) observations showed a concomitant increase in the particle size: planar size and thickness ranged from 90 to 200 nm and from 20 to 85 nm, respectively, depending on the nature of the solvent. A possible mechanism explaining the change in the x, y, and w values, the growth of nanoparticles, and the role of the solvent is proposed. Finally, the possibility of using these gels to disperse the ZrP nanoparticles within the polymer matrix of Nafion117 is shown.

16.
Pharmaceutics ; 13(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34575404

RESUMO

Taxifolin, also known as dihydroquercetin, possesses several interesting biological properties. The purpose of the study was to identify polymorphs of taxifolin prepared using crystallization in different solvents. Data from X-ray powder diffraction, differential scanning calorimetry, and thermogravimetry enabled us to detect six different crystalline phases for taxifolin. Besides the already known fully hydrated phase, one partially hydrated phase, one monohydrated phase, two anhydrous polymorphs, and one probably solvated phase were obtained. The unit cell parameters were defined for three of them, while one anhydrous polymorph was fully structurally characterized by X-ray powder diffraction data. Scanning electron microscopy and hot stage microscopy were also employed to characterize the crystallized taxifolin powders. The hydrate and anhydrous forms showed remarkable stability in drastic storage conditions, and their solubility was deeply evaluated. The anhydrous form converted into the hydrate form during the equilibrium solubility study and taxifolin equilibrium solubility was about 1.2 mg/mL. The hydrate taxifolin intrinsic dissolution rate was 56.4 µg cm-2 min-1. Using Wood's apparatus, it was not possible to determine the intrinsic dissolution rate of anhydrous taxifolin that is expected to solubilize more rapidly than the hydrate form. In view of its high stability, its use can be hypothesized.

17.
ACS Biomater Sci Eng ; 7(4): 1361-1373, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33739085

RESUMO

This work is focused on the preparation and multi-technique characterization of potentially biocompatible reactive interfaces obtained by combining layered double hydroxides (LDHs) and hydroxyapatite (HA). Antimicrobial and osteoinductive metallic ions as Zn2+ and Ga3+ were chosen as intralayer constituents of LDH to obtain ZnAl and ZnAlGa systems. These LDHs, exchanged with dihydrogenphosphate anions, promoted the precipitation of HA on the LDH surface yielding HA@LDH composites. X-ray diffraction quantitative analysis, through the Rietveld refinement method, coupled with elemental analysis and micro-Raman spectroscopy showed the formation of a mixed Ca-Zn HA phase. Scanning electron microscopy revealed that HA, in the presence of LDH, grew preferentially along its a-axis, thus crystallizing mainly in the form of flake crystals. LDH and HA@LDH composites showed antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa at not cytotoxic concentrations for human osteoblasts (hFob 1.19), especially when Ga cations were present in the LDH structure. The effect of the presence of HA in the composites on the bone-bonding ability and on human osteoblast proliferation was also investigated. The HA seemed to reduce the toxicity of the LDH toward human osteoblast while did not affect the bone-bonding ability. This multidisciplinary study provides the bio-chemical, structural characterization of new LDH and HA@LDH composites, evaluating also their bioactivity to be potentially applicable to titanium-based prostheses.


Assuntos
Durapatita , Hidróxidos , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus , Zinco
18.
Inorg Chem ; 49(20): 9664-70, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20863075

RESUMO

Two new zirconium aminophosphonates have been obtained by reaction of Zr(IV) with piperazine-N,N'-bis(methylenephosphonate) building blocks. Their crystal structure has been determined ab initio from X-ray powder diffraction data collected with a conventional diffractometer. Although prepared in similar conditions, their composition and crystal structure is markedly different. Compound 1, of formula Zr(2)H(4)[(O(3)PCH(2))(2)N(2)C(4)H(8)](3)·9H(2)O, has a three-dimensional structure (trigonal, space group R3 (No. 148), a = 19.9400(9) Å, c = 9.5728(6) Å, Z = 3), made of infinite inorganic chains of ZrO(6) octahedra and PO(3)C tetrahedra, running along the c-axis direction, connected by piperazine groups in the ab plane, and generating channels running along the c axis. Compound 2, of formula ZrF(2)(O(3)PCH(2))(2)(NH)(2)C(4)H(8), has a pillared-layered structure (monoclinic, space group P2(1)/c (No. 14), a = 8.7148(2) Å, b = 8.1731(1) Å, c = 9.0134(2) Å, ß = 105.175(1)° Z = 2) in which inorganic layers, made of the connectivity of Zr octahedra and P tetrahedra, are covalently connected by piperazine groups, that act as pillars. The effect of the various synthesis parameters is discussed. A probable structure directing parameter seems to be the pH value of the starting precipitation solution, that can influence the protonation of N atoms of piperazine moiety.

19.
Inorg Chem ; 49(20): 9409-15, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20853859

RESUMO

Microcrystalline zirconium phosphate (ZrP) has been synthesized by precipitating a Zr(IV) salt (i.e., zirconium propionate, chloride, or oxide chloride) with H(3)PO(4) from aqueous solutions of oxalic acid (H(2)C(2)O(4)) at 80 °C. Independent of the Zr(IV) salt, crystalline materials have been obtained with reaction yields >90% and reaction time of one day for the following molar ratios: H(3)PO(4)/Zr = 6 and H(2)C(2)O(4)/Zr = 10. The material prepared from Zr propionate (ZrP(prop)) has been further investigated by scanning electron microscopy, thermogravimetry, and ion exchange titrations. Structural characterization has been performed by X-ray powder diffraction and solid state (1)H-(31)P 2D correlation NMR experiments. Structural parameters obtained by Rietveld analysis of powder diffraction data agree with those reported in the literature for single crystal determinations. Moreover, NMR data show that the closest proton environment of the phosphorus atom in ZrP(prop) is the same as in ZrP samples of similar crystallinity prepared according to literature methods.

20.
Dalton Trans ; 49(12): 3869-3876, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31854406

RESUMO

New organic derivatives of α-zirconium phosphate (ZrP) were prepared by reaction of a gel of nanocrystalline ZrP with 1,2,7,8-diepoxyoctane (diepoxide), leading to the formation of P-O-C bonds. A series of compounds having composition Zr(O3POH)2-2x(O3POCH2CH(OH)(CH2)4CH(OH)CH2OPO3)x (hereafter indicated as ZrP(dep)x) were obtained by varying the diepoxide/Zr molar ratio in the range 0.25-1. The samples were characterized by elemental, thermal and X-ray powder diffraction analysis. The reaction turned out to be nearly quantitative, the x values of ZrP(dep)x being in the range 0.16 to 1.0. The interlayer distance slightly increased with increasing x, going from 12.7 to 13.2 Å. Interestingly, the materials easily intercalated alkanols at room temperature, both from liquid and vapor phases; it is noteworthy that ZrP(dep)0.30 was able to reversibly take up 42 wt% ethanol from the vapor phase, in agreement with the presence of available free space both in the interlayer and in the intercrystal region. Geometrical structural models in which the α-ZrP layers are connected by the dep chains were proposed to support the obtained results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA