Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 57(16): 4353-4359, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877378

RESUMO

A decoupled analytical technique based on the Stokes-Mueller matrix decomposition method extracts polarization properties of human blood plasma, collagen solution, and calfskin. The proposed method is applied initially to extract the nine effective optical parameters of human blood plasma samples containing D-glucose powder with concentrations ranging from 0-1 M. The optical rotation angle of circular birefringence (CB) increases linearly with the glucose concentration in human blood plasma samples (r2=0.9782) and in tissue phantom samples (r2=0.9939). Meanwhile, the phase retardance of linear birefringence (LB) increases slightly from 0° to almost 2° as the D-glucose concentration increases. However, for the plasma samples, the optical rotation angle increases by 1.07±0.1 deg for each additional mole of D-glucose, while, for the tissue phantom samples, the optical rotation angle increases by 0.75±0.1 deg. For collagen solutions with concentrations ranging from 0 to 2 mg/mL, a strong linear relationship (r2=0.9936) is observed between the phase retardance of linear birefringence and the collagen concentration. Finally, for the calfskin samples, the linear birefringence reduces exponentially (r2=0.9689) over time following collagenase treatment. Overall, the decoupled analytical model provides a reliable and straightforward technique for detecting the optical properties of laboratory and natural biological samples. As a result, it has significant potential for diagnostic applications and the structural analysis of biological tissues.


Assuntos
Algoritmos , Colágeno/química , Fenômenos Ópticos , Plasma/química , Pele/química , Animais , Birrefringência , Bovinos , Glucose/química , Humanos , Imagens de Fantasmas , Pós , Soluções
2.
Acta Haematol ; 137(1): 44-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27923225

RESUMO

Platelet integrin αIIbß3 possesses a Leu/Pro polymorphism at residue 33 (Leu33/HPA-1a or Pro33/HPA-1b). The Pro33 isoform has been suggested to exhibit prothrombotic features. αIIbß3-expressing CHO (Chinese hamster ovary) cells on immobilized fibrinogen show activation of the MAP kinase family member ERK2, with an enhanced ERK2 activity in Pro33 cells compared to Leu33 cells. In our present work, we examined how the Leu/Pro polymorphism modulates the ERK2 activation stimulated by 2 differently triggered outside-in signalings. We either treated the CHO cells with Mn2+ or allowed them to adhere to fibrinogen. Moreover, we studied which signaling cascades are involved in ERK2 activation. In contrast to immobilized fibrinogen, Mn2+ did not significantly increase ERK2 activation. However, Mn2+ had a synergistic effect on ERK2 phosphorylation when combined with immobilized fibrinogen. Pro33 cells adherent to fibrinogen exhibited a significantly greater ERK2 activity than Leu33 cells in the presence of Mn2+, which peaked after 10 min of adhesion. Our data showed that Src family and rho kinases play a crucial role in the integrin αIIbß3-dependent outside-in signaling to ERK2.


Assuntos
Sistema de Sinalização das MAP Quinases , Manganês/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Quinases Associadas a rho/genética , Quinases da Família src/genética , Animais , Plaquetas/metabolismo , Células CHO , Cátions Bivalentes , Adesão Celular/efeitos dos fármacos , Cricetulus , Fibrinogênio/química , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo
3.
AAPS PharmSciTech ; 18(7): 2727-2736, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28299621

RESUMO

Microemulsion has the potentials to enhance dissolution as well as facilitate absorption and permeation of poorly water-soluble drugs through biological membranes. However, its application to govern a controlled release buccal delivery for local treatment has not been discovered. The aim of this study is to develop microemulsion-based mucoadhesive wafers for buccal delivery based on an incorporation of the microemulsion with mucoadhesive agents and mannitol. Ratio of oil to surfactant to water in the microemulsion significantly impacted quality of the wafers. Furthermore, the combination of carbopol and mannitol played a key role in forming the desired buccal wafers. The addition of an extra 50% of water to the formulation was suitable for wafer formation by freeze-drying, which affected the appearance and distribution of carbopol in the wafers. The amount of carbopol was critical for the enhancement of mucoadhesive properties and the sustained drug release patterns. Release study presented a significant improvement of the drug release profile following sustained release for 6 h. Ex vivo mucoadhesive studies provided decisive evidence to the increased retention time of wafers along with the increased carbopol content. The success of this study indicates an encouraging strategy to formulate a controlled drug delivery system by incorporating microemulsions into mucoadhesive wafers.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Mucosa Bucal/metabolismo , Administração Bucal , Animais , Preparações de Ação Retardada , Emulsões , Solubilidade , Suínos
4.
Pharm Res ; 33(1): 102-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26264511

RESUMO

PURPOSE: This study is to design a sustained release solid dispersion using swellable polymer by melting method. METHODS: Polyethylene glycol 6000 (PEG 6000) and hydroxypropyl methylcellulose 4000 (HPMC 4000) were used in solid dispersion for not only enhancing drug dissolution rate but also sustaining drug release. HPMC 4000 is a common swellable polymer in matrix sustained release dosage form, but could not be used in preparation of solid dispersion by melting method. However, the current study utilized the swelling capability of HPMC 4000 accompanied by the common carrier PEG 6000 in solid dispersion to accomplish the goal. RESULTS: While PEG 6000 acted as a releasing stimulant carrier and provided an environment to facilitate the swelling of HPMC 4000, this swellable polymer could act as a rate-controlling agent. This greatly assisted the dissolution enhancement by changing the crystalline structure of drug to more amorphous form and creating a molecular interaction. CONCLUSIONS: These results suggested that this useful technique can be applied in designing a sustained release solid dispersion with many advantages.


Assuntos
Preparações de Ação Retardada , Desenho de Fármacos , Derivados da Hipromelose/química , Química Farmacêutica , Polietilenoglicóis/química , Solubilidade , Comprimidos , Difração de Raios X
5.
J Nanosci Nanotechnol ; 14(1): 815-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730300

RESUMO

The structure of polymeric amphiphiles with both hydrophilic and hydrophobic groups forming self-assembled nanoparticles have attracted increasing attention in studies of delivery systems of therapeutic agents. An amphiphilic carrier for self-assembly in an aqueous solution is preferable because of its structure with a hydrophobic core and hydrophilic outer shell, which can be applied to many biotechnological and pharmaceutical fields with numerous types of drugs. An amphiphilic carrier for self-assembly also represents the most appealing delivery system owing to its exceptional advantages in selectively delivering drugs to tumor cells and thus, reduction of side effects. This paper reviews two types of self-assembled nanoparticles/micelles of conjugated polymeric amphiphiles: (1) self-assembled micelles/nanoparticles of amphiphilic conjugates followed by drug loading and (2) self-assembled micelles/nanoparticles of polymer-drug conjugates where a conjugation reaction occurs between the polymer and drug. The development of the research has been addressed in this review with up-to-date references. In conclusion, the challenges and remaining difficulties for the future development are discussed.


Assuntos
Preparações de Ação Retardada/química , Nanocápsulas/química , Polímeros/química , Absorção , Cristalização/métodos , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
6.
HardwareX ; 15: e00455, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37497344

RESUMO

Lateral Flow Assays (LFA) have been one of the most widely adopted technologies in clinical diagnosis over recent years, especially during the COVID-19 pandemic, due to their feasibility, compactness, and rapid readout. However, the precise dispensing of antibodies-a key part of the fabrication process-requires costly line dispenser equipment, which poses a challenge to researchers with limited budgets. This study aims to resolve this key issue by introducing a Syringe-based Arduino-operated Low-cost Antibody Dispenser (SALAD). By utilizing a microneedle, stepper motor-driven syringe pump, and conveyor belt, SALAD can form micro-droplets to create an even band of antibodies. Our evaluation results showed comparable performance between SALAD and a commercialized model - Claremont ALFRD, with SALAD exceeding in affordability and feasibility. SALAD yielded an even signal, uniform bandwidth, and low background noise, yet optimization in the conveyor belt should be considered to enhance stability. With a low manufacturing cost ($200.61) compared to the commercialized models, our model is expected to provide an affordable approach for LFA researchers.

7.
Neurochem Int ; 170: 105612, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714337

RESUMO

Central nervous system (CNS) diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), glioblastoma (GBM), and peripheral nerve injury have been documented as incurable diseases, which lead to serious impacts on human health especially prevalent in the aging population worldwide. Most of the treatment strategies fail due to low efficacy, toxicity, and poor brain penetration. Recently, advancements in nanotechnology have helped alleviate the challenges associated with the application of cell membrane-based nanomaterials against CNS diseases. In the following review, the existing types of cell membrane-based nanomaterials systems which have improved therapeutic efficacy for CNS diseases would be described. A summary of recent progress in the incorporation of nanomaterials in cell membrane-based production, separation, and analysis will be provided. Addition to, challenges relate to large-scale manufacturing of cell membrane-based nanomaterials and future clinical trial of such platforms will be discussed.


Assuntos
Doenças do Sistema Nervoso Central , Nanoestruturas , Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Barreira Hematoencefálica/metabolismo , Nanoestruturas/uso terapêutico , Doenças do Sistema Nervoso Central/metabolismo , Membrana Celular
8.
ADMET DMPK ; 11(4): 551-560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937241

RESUMO

Background and Purpose: The utilization of doxorubicin (DOX) in clinal trials is also challenging owing to its adverse effects, including low oral bioavailability, generation of reactive oxygen species (ROS), cardiotoxicity, and epithelial barrier damage. Recently, scavenging of ROS reduced the cytotoxicity of DOX, suggesting a new approach for using DOX as an anticancer treatment. Thus, in this study, non-silica and silica redox nanoparticles (denoted as RNPN and siRNP, respectively) with ROS scavenging features have been designed to encapsulate DOX and reduce its cytotoxicity. Experimental Approach: DOX-loaded RNPN (DOX@RNPN) and DOX-loaded siRNP (DOX@siRNP) were prepared by co-dissolving DOX with RNPN and siRNP, respectively. The size and stability of nanoparticles were characterized by the dynamic light scattering system. Additionally, encapsulation efficiency, loading capacity, and release profile of DOX@RNPN and DOX@siRNP were identified by measuring the absorbance of DOX. Finally, the cytotoxicity of DOX@RNPN and DOX@siRNP against normal murine fibroblast cells (L929), human hepatocellular carcinoma cells (HepG2), and human breast cancer cells (MCF-7) were also investigated. Key results: The obtained result showed that RNPN exhibited a pH-sensitive character while silanol moieties improved the stability of siRNP in physiological conditions. DOX@RNPN and DOX@siRNP were formed at several tens of nanometers in diameter with narrow distribution. Moreover, DOX@siRNP stabilized under different pH buffers, especially gastric pH, and improved encapsulation of DOX owing to the addition of silanol groups. DOX@RNPN and DOX@siRNP maintained anticancer activity of DOX against HepG2, and MCF-7 cells, while their cytotoxicity on L929 cells was significantly reduced compared to free DOX treatment. Conclusion: DOX@RNPN and DOX@siRNP could effectively suppress the adverse effect of DOX, suggesting the potential to become promising nanomedicines for cancer treatments.

9.
Mol Diagn Ther ; 27(4): 457-473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217723

RESUMO

Neurodegenerative diseases (NDs) such as dementia, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis are some of the most prevalent disorders currently afflicting healthcare systems. Many of these diseases share similar pathological hallmarks, including elevated oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation, all of which contribute to the deterioration of the nervous system's structure and function. The development of diagnostic and therapeutic materials in the monitoring and treatment of these diseases remains challenging. One of the biggest challenges facing therapeutic and diagnostic materials is the blood-brain barrier (BBB). The BBB is a multifunctional membrane possessing a plethora of biochemical, cellular, and immunological features that ensure brain homeostasis by preventing the entry and accumulation of unwanted compounds. With regards to neurodegenerative diseases, the recent application of tailored nanomaterials (nanocarriers and nanoparticles) has led to advances in diagnostics and therapeutics. In this review, we provide an overview of commonly used nanoparticles and their applications in NDs, which may offer new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Nanopartículas , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Nanopartículas/uso terapêutico , Nanopartículas/química
10.
IBRO Neurosci Rep ; 14: 308-319, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388488

RESUMO

Mindfulness is an intervention that was used in many psychiatry treatments. In this study, the subject experienced two different states: (1) attention (i.e., listening to a podcast) and (2) mindfulness (i.e., meditation). Twenty-two students were included in a Mindfulness-Based Stress Reduction (MBSR) course with EEG recording sessions on week four and week six. Brain dynamics were investigated to elucidate the complexity and connectivity of the brain. The alpha PSD increased in all brain areas during mindfulness in both weeks. For complexity, Fractal Dimension (FD) increased significantly during meditation in the week six recording. When comparing the FD in the mindfulness state of week four and week six, we also witnessed a significant increase in the following week. The coherence of the interhemispheric frontal and temporal regions increased significantly in both weeks. In conclusion, the subject successfully transferred from attention to mindfulness, demonstrated by the alpha changes when going from podcast to meditating. An enhancement in brain complexity was found, suggesting an augmentation in cognitive function. Finally, the coherence exhibits strengthened connections in the frontal area.

11.
IBRO Neurosci Rep ; 13: 523-532, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590099

RESUMO

Glioma grading is critical in treatment planning and prognosis. This study aims to address this issue through MRI-based classification to develop an accurate model for glioma diagnosis. Here, we employed a deep learning pipeline with three essential steps: (1) MRI images were segmented using preprocessing approaches and UNet architecture, (2) brain tumor regions were extracted using segmentation, then (3) high-grade gliomas and low-grade gliomas were classified using the VGG and GoogleNet implementations. Among the additional preprocessing techniques used in conjunction with the segmentation task, the combination of data augmentation and Window Setting Optimization was found to be the most effective tool, resulting in the Dice coefficient of 0.82, 0.91, and 0.72 for enhancing tumor, whole tumor, and tumor core, respectively. While most of the proposed models achieve comparable accuracies of about 93 % on the testing dataset, the pipeline of VGG combined with UNet segmentation obtains the highest accuracy of 97.44 %. In conclusion, the presented architecture illustrates a realistic model for detecting gliomas; moreover, it emphasizes the significance of data augmentation and segmentation in improving model performance.

12.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080616

RESUMO

A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6-3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6-3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6-3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.

13.
Clocks Sleep ; 3(2): 274-288, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063579

RESUMO

The rapid growth of point-of-care polysomnographic alternatives has necessitated standardized evaluation and validation frameworks. The current average across participant validation methods may overestimate the agreement between wearable sleep tracker devices and polysomnography (PSG) systems because of the high base rate of sleep during the night and the interindividual difference across the sampling population. This study proposes an evaluation framework to assess the aggregating differences of the sleep architecture features and the chronologically epoch-by-epoch mismatch of the wearable sleep tracker devices and the PSG ground truth. An AASM-based sleep stage categorizing method was proposed to standardize the sleep stages scored by different types of wearable trackers. Sleep features and sleep stage architecture were extracted from the PSG and the wearable device's hypnograms. Therefrom, a localized quantifier index was developed to characterize the local mismatch of sleep scoring. We evaluated different commonly used wearable sleep tracking devices with the data collected from 22 different subjects over 30 nights of 8-h sleeping. The proposed localization quantifiers can characterize the chronologically localized mismatches over the sleeping time. The outperformance of the proposed method over existing evaluation methods was reported. The proposed evaluation method can be utilized for the improvement of the sensor design and scoring algorithm.

14.
Biomed Pharmacother ; 143: 112117, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479020

RESUMO

Drug delivery to central nervous system (CNS) diseases is very challenging since the presence of the innate blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier that impede drug delivery. Among new strategies to overcome these limitations and successfully deliver drugs to the CNS, nanotechnology-based drug delivery platform, offers potential therapeutic approach for the treatment of some common neurological disorders like Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease. This review aimed to highlight advances in research on the development of nano-based therapeutics for their implications in therapy of CNS disorders. The challenges during clinical translation of nanomedicine from bench to bed side is also discussed.


Assuntos
Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Portadores de Fármacos , Nanomedicina , Nanopartículas , Animais , Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Composição de Medicamentos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Permeabilidade , Pesquisa Translacional Biomédica
15.
Mater Sci Eng C Mater Biol Appl ; 120: 111724, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545875

RESUMO

Wound dressings are typically used to provide a favorable environment supporting the intricate process of wound healing. This research aims to fabricate and evaluate an electrospun polycaprolactone (EsPCL) membrane coated with various densities of chitosan oligomers (COS) - a biological agent - for application as bioactive wound dressing. Weight calculation was employed to investigate the density of COS coated onto the electrospun PCL membrane. Physicochemical characteristics of the prepared membranes, such as hydrophilicity and mechanical properties were demonstrated and evaluated through standard experimental methods. In vitro assays and mice model were used to investigate the antibacterial activities, cytocompatibility, hemostasis and the in vivo interaction of the membranes. The results showed that COS was coated successfully on the surface of the polymeric membrane, altering its morphology and associated characteristics. The greater concentration of COS led to an increase in the thickness of the membrane, which resulted in stronger antibacterial activities. Moreover, the increase of chitosan oligomers density in the membrane induced faster hemostasis and affected the re-epithelialization and wound healing in mice. Thus, the membrane as a whole and particularly chitosan oligomers were shown to be potential for further studies regarding wound dressing.


Assuntos
Quitosana , Animais , Bandagens , Camundongos , Poliésteres , Cicatrização
16.
J Control Release ; 331: 515-524, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33616078

RESUMO

Chronic inflammatory diseases such as inflammatory bowel diseases (IBD), which are strongly related to the overproduction of reactive oxygen species (ROS), have become more threatening to health. Silymarin is an active compound with the effect of expressing anti-inflammatory activity; however, it exhibits poor bioavailability due to the rapid metabolism and secretion, low permeability across the intestinal epithelial cells, and poor water solubility. In this study, we developed silica-containing redox nanoparticles (siRNP) with 50-60 nm in diameter to improve the bioavailability of silymarin by improving its uptake into the bloodstream and delivery to the targeted tissues of the colon. Silymarin-loaded siRNP (SM@siRNP) significantly increased the antioxidant capacity and anti-inflammatory efficacy in vitro by scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and suppressing nitric oxide and pro-inflammatory cytokines as compared to the other treatments such as free silymarin, siRNP, and silymarin-loaded si-nRNP (the control nanoparticle without ROS scavenging property). Orally administered SM@siRNP significantly improved the bioavailability of silymarin and its retention in the colonic mucosa. The anti-inflammatory effects of SM@siRNP were also investigated in dextran sodium sulfate (DSS)-induced colitis in mice and it was observed that SM@siRNP treatment significantly improved the damage in the colonic mucosa of DSS colitis mice as compared to the other treatments. The results in this study indicate that SM@siRNP is a promising nanomedicine for enhancing the anti-inflammatory activity of silymarin and has a high potential for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Silimarina , Animais , Disponibilidade Biológica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Oxirredução , Dióxido de Silício/metabolismo , Silimarina/metabolismo
17.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578017

RESUMO

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.

18.
Materials (Basel) ; 14(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442997

RESUMO

The use of naturally occurring materials with antibacterial properties has gained a great interest in infected wound management. Despite being an abundant resource in Vietnam, chitosan and its derivatives have not yet been intensively explored for their potential in such application. Here, we utilized a local chitosan source to synthesize chitosan oligomers (OCS) using hydrogen peroxide (H2O2) oxidation under the microwave irradiation method. The effects of H2O2 concentration on the physicochemical properties of OCS were investigated through molecular weight, degree of deacetylation, and heavy metal contamination for optimization of OCS formulation. Then, the antibacterial inhibition was examined; the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC) of OCS-based materials were determined against common skin-inhabitant pathogens. The results show that the local Vietnamese chitosan and its derivative OCS possessed high-yield purification while the molecular weight of OCS was inversely proportional and proportional to the concentration of H2O2, respectively. Further, the MIC and MBC of OCS ranged from 3.75 to less than 15 mg/mL and 7.5-15 mg/mL, respectively. Thus, OCS-based materials induce excellent antimicrobial properties and can be attractive for wound dressings and require further investigation.

19.
J Biomed Mater Res A ; 109(12): 2414-2424, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34145706

RESUMO

In this study, the effect of coated hydrogel layer on characteristics of the whole gelatin/silver nanoparticles multi-coated polycaprolactone membrane (PCLGelAg) was investigated through systematic and typical wound dressing characterizations to select the optimal number of layers for practical applications. Scanning electron microscopy, free swell absorptive capacity and tensile test in both wet and dry conditions were conducted to characterize all fabricated membranes of six coating times. In vitro cytotoxicity and agar diffusion evaluation were also carried out to assess the biocompatibility and antibacterial activity of the membranes. The findings illustrated that as the coated layers increase, the absorptive capacity, and degradation rate were higher, the membranes were stiffer in dry state while the tensile strength in wet state, elongation, and cell viability were significantly decreased. PCLGelAg3 was chosen to be the best fit for wound healing since it maintained quite sufficient maximum buffer uptake, elasticity, cell viability along with inducing abnormalities in bacterial morphology and preventing biofilm formation.


Assuntos
Bandagens , Gelatina , Hidrogéis , Nanopartículas Metálicas , Poliésteres/química , Prata , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Hidrogéis/farmacologia , Hidrogéis/toxicidade , Membranas Artificiais , Camundongos , Microscopia Eletrônica de Varredura , Poliésteres/farmacologia , Poliésteres/toxicidade , Resistência à Tração , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA