Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286037

RESUMO

The everninomicins are bacterially produced antibiotic octasaccharides characterized by the presence of two interglycosidic spirocyclic ortho-δ-lactone (orthoester) moieties. The terminating G- and H-ring sugars, L-lyxose and C-4 branched sugar ß-D-eurekanate, are proposed to be biosynthetically derived from nucleotide diphosphate pentose sugar pyranosides; however, the identity of these precursors and their biosynthetic origin remain to be determined. Herein we identify a new glucuronic acid decarboxylase from Micromonospora belonging to the superfamily of short-chain dehydrogenase/reductase enzymes, EvdS6. Biochemical characterization demonstrated that EvdS6 is an NAD+-dependent bifunctional enzyme that produces a mixture of two products, differing in the sugar C-4 oxidation state. This product distribution is atypical for glucuronic acid decarboxylating enzymes, most of which favor production of the reduced sugar and a minority of which favor release of the oxidized product. Spectroscopic and stereochemical analysis of reaction products revealed that the first product released is the oxidatively produced 4-keto-D-xylose and the second product is the reduced D-xylose. X-ray crystallographic analysis of EvdS6 at 1.51 Å resolution with bound co-factor and TDP demonstrated that the overall geometry of the EvdS6 active site is conserved with other SDR enzymes and enabled studies probing structural determinants for the reductive half of the net neutral catalytic cycle. Critical active site threonine and aspartate residues were unambiguously identified as essential in the reductive step of the reaction and resulted in enzyme variants producing almost exclusively the keto sugar. This work defines potential precursors for the G-ring L-lyxose and resolves likely origins of the H-ring ß-D-eurekanate sugar precursor.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Carboxiliases , Micromonospora , Família Multigênica , Xilose , Aminoglicosídeos/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Micromonospora/enzimologia , Micromonospora/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
J Biol Chem ; 298(1): 101493, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915025

RESUMO

Fibrin (Fbn) deposits are a hallmark of staphylocoagulase (SC)-positive endocarditis. Binding of the N terminus of Staphylococcus aureus SC to host prothrombin triggers formation of an active SC·prothrombin∗ complex that cleaves host fibrinogen to Fbn. In addition, the C-terminal domain of the prototypical SC contains one pseudorepeat (PR) and seven repeats (R1 → R7) that bind fibrinogen/Fbn fragment D (frag D) by a mechanism that is unclear. Here, we define affinities and stoichiometries of frag D binding to C-terminal SC constructs, using fluorescence equilibrium binding, NMR titration, alanine scanning, and native PAGE. We found that constructs containing the PR and single repeats bound frag D with KD ∼50 to 130 nM and a 1:1 stoichiometry, indicating a conserved binding site bridging the PR and each repeat. NMR titration of PR-R7 with frag D revealed that residues 22 to 49, bridging PR and R7, constituted the minimal peptide (MP) for binding, corroborated by alanine scanning, and binding of labeled MP to frag D. MP alignment with the PR-R and inter-repeat junctions identified critical conserved residues. Full-length PR-(R1 → R7) bound frag D with KD ∼20 nM and a stoichiometry of 1:5, whereas constructs containing the PR and various three repeats competed with PR-(R1 → R7) for frag D binding, with a 1:3 stoichiometry. These findings are consistent with binding at PR-R and R-R junctions with modest inter-repeat sequence variability. CD of PR-R7 and PR-(R1 → R7) suggested a disordered flexible structure, allowing binding of multiple fibrin(ogen) molecules. Taken together, these results provide insights into pathogen localization on host fibrin networks.


Assuntos
Coagulase , Fibrinogênio , Alanina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coagulase/química , Coagulase/metabolismo , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Ligação Proteica , Protrombina/metabolismo , Sequências Repetidas Terminais
3.
J Biol Chem ; 298(4): 101792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247387

RESUMO

This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the amyloid-ß polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a KD of 15-47 µM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC50 values in the range of 15-164 µM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner.


Assuntos
Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Verteporfina , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Receptores Notch/metabolismo , Verteporfina/metabolismo , Verteporfina/farmacologia
4.
J Am Chem Soc ; 144(28): 12602-12607, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786958

RESUMO

An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel cis-amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks. NMR spectroscopy and titration experiments indicate that the novel conformer is as abundant as the closed conformer in 90/10 (v/v) methanol/water and is the main conformer at 10/90 methanol/water. Five other conformers were also detected in 90/10 methanol/water, one in slow exchange with A1, another one in slow exchange with the closed form and three minor ones, one of which contains two cis amides Abu2-Sar3 and MeBmt1-MeVal11. These conformers help better understand the wide spectrum of membrane permeability observed for CycA analogues and, to some extent, the binding of CycA to protein targets.


Assuntos
Ciclosporina , Metanol , Amidas/química , Ligação de Hidrogênio , Conformação Molecular , Conformação Proteica , Água/química
5.
Biochemistry ; 60(1): 41-52, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382597

RESUMO

Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and ß configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the ß configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.


Assuntos
Adenina/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA/química , Reparo do DNA , Humanos , Conformação de Ácido Nucleico
6.
Chem Res Toxicol ; 34(3): 901-911, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33595290

RESUMO

Dietary exposure to aflatoxins is a significant risk factor in the development of hepatocellular carcinomas. Following bioactivation by microsomal P450s, the reaction of aflatoxin B1 (AFB1) with guanine (Gua) in DNA leads to the formation of stable, imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adducts. In contrast to most base modifications that result in destabilization of the DNA duplex, the AFB1-FapyGua adduct increases the thermal stability of DNA via 5'-interface intercalation and base-stacking interactions. Although it was anticipated that this stabilization might make these lesions difficult to repair relative to helix distorting modifications, prior studies have shown that both the nucleotide and base excision repair pathways participate in the removal of the AFB1-FapyGua adduct. Specifically for base excision repair, we previously showed that the DNA glycosylase NEIL1 excises AFB1-FapyGua and catalyzes strand scission in both synthetic oligodeoxynucleotides and liver DNA of exposed mice. Since it is anticipated that error-prone replication bypass of unrepaired AFB1-FapyGua adducts contributes to cellular transformation and carcinogenesis, the structural and thermodynamic parameters that modulate the efficiencies of these repair pathways are of considerable interest. We hypothesized that the DNA sequence context in which the AFB1-FapyGua adduct is formed might modulate duplex stability and consequently alter the efficiencies of NEIL1-initiated repair. To address this hypothesis, site-specific AFB1-FapyGua adducts were synthesized in three sequence contexts, with the 5' neighbor nucleotide being varied. DNA structural stability analyses were conducted using UV absorbance- and NMR-based melting experiments. These data revealed differentials in thermal stabilities associated with the 5'-neighbor base pair. Single turnover kinetic analyses using the NEIL1 glycosylase demonstrated corresponding sequence-dependent differences in the repair of this adduct, such that there was an inverse correlation between the stabilization of the duplex and the efficiency of NEIL1-mediated catalysis.


Assuntos
Aflatoxina B1/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/metabolismo , Pirimidinas/metabolismo , Aflatoxina B1/química , Sequência de Bases , Biocatálise , DNA/química , Adutos de DNA/química , DNA Glicosilases/química , Guanina/química , Humanos , Estrutura Molecular , Pirimidinas/química
7.
J Am Chem Soc ; 142(29): 12715-12729, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32575981

RESUMO

How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-ß-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.


Assuntos
Colesterol/química , Proteínas de Membrana/química , Esfingolipídeos/química , Microscopia Crioeletrônica , Humanos
8.
Traffic ; 17(4): 400-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26756312

RESUMO

The adaptor protein 4 (AP4) complex (ϵ/ß4/µ4/σ4 subunits) forms a non-clathrin coat on vesicles departing the trans-Golgi network. AP4 biology remains poorly understood, in stark contrast to the wealth of molecular data available for the related clathrin adaptors AP1 and AP2. AP4 is important for human health because mutations in any AP4 subunit cause severe neurological problems, including intellectual disability and progressive spastic para- or tetraplegias. We have used a range of structural, biochemical and biophysical approaches to determine the molecular basis for how the AP4 ß4 C-terminal appendage domain interacts with tepsin, the only known AP4 accessory protein. We show that tepsin harbors a hydrophobic sequence, LFxG[M/L]x[L/V], in its unstructured C-terminus, which binds directly and specifically to the C-terminal ß4 appendage domain. Using nuclear magnetic resonance chemical shift mapping, we define the binding site on the ß4 appendage by identifying residues on the surface whose signals are perturbed upon titration with tepsin. Point mutations in either the tepsin LFxG[M/L]x[L/V] sequence or in its cognate binding site on ß4 abolish in vitro binding. In cells, the same point mutations greatly reduce the amount of tepsin that interacts with AP4. However, they do not abolish the binding between tepsin and AP4 completely, suggesting the existence of additional interaction sites between AP4 and tepsin. These data provide one of the first detailed mechanistic glimpses at AP4 coat assembly and should provide an entry point for probing the role of AP4-coated vesicles in cell biology, and especially in neuronal function.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Complexo 4 de Proteínas Adaptadoras/química , Complexo 4 de Proteínas Adaptadoras/genética , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Mutação Puntual , Ligação Proteica
9.
J Biol Chem ; 292(8): 3154-3163, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069813

RESUMO

The structural and biophysical properties typically associated with G-quadruplex (G4) structures render them a significant block for DNA replication, which must be overcome for cell division to occur. The Werner syndrome protein (WRN) is a RecQ family helicase that has been implicated in the efficient processing of G4 DNA structures. The aim of this study was to identify the residues of WRN involved in the binding and ATPase-driven unwinding of G4 DNA. Using a c-Myc G4 DNA model sequence and recombinant WRN, we have determined that the RecQ-C-terminal (RQC) domain of WRN imparts a 2-fold preference for binding to G4 DNA relative to non-G4 DNA substrates. NMR studies identified residues involved specifically in interactions with G4 DNA. Three of the amino acids in the WRN RQC domain that exhibited the largest G4-specific changes in NMR signal were then mutated alone or in combination. Mutating individual residues implicated in G4 binding had a modest effect on WRN binding to DNA, decreasing the preference for G4 substrates by ∼25%. Mutating two G4-interacting residues (T1024G and T1086G) abrogated preferential binding of WRN to G4 DNA. Very modest decreases in G4 DNA-stimulated ATPase activity were observed for the mutant enzymes. Most strikingly, G4 unwinding by WRN was inhibited ∼50% for all three point mutants and >90% for the WRN double mutant (T1024G/T1086G) relative to normal B-form dsDNA substrates. Our work has helped to identify residues in the WRN RQC domain that are involved specifically in the interaction with G4 DNA.


Assuntos
DNA/metabolismo , Quadruplex G , Helicase da Síndrome de Werner/metabolismo , Síndrome de Werner/enzimologia , DNA/química , DNA/genética , Reparo do DNA , Replicação do DNA , Humanos , Modelos Moleculares , Mutação , Domínios Proteicos , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/química , Helicase da Síndrome de Werner/genética
10.
J Biol Chem ; 292(41): 16847-16857, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28860187

RESUMO

Xeroderma pigmentosum (XP) complementation group A (XPA) is an essential scaffolding protein in the multiprotein nucleotide excision repair (NER) machinery. The interaction of XPA with DNA is a core function of this protein; a number of mutations in the DNA-binding domain (DBD) are associated with XP disease. Although structures of the central globular domain of human XPA and data on binding of DNA substrates have been reported, the structural basis for XPA's DNA-binding activity remains unknown. X-ray crystal structures of the central globular domain of yeast XPA (Rad14) with lesion-containing DNA duplexes have provided valuable insights, but the DNA substrates used for this study do not correspond to the substrates of XPA as it functions within the NER machinery. To better understand the DNA-binding activity of human XPA in NER, we used NMR to investigate the interaction of its DBD with a range of DNA substrates. We found that XPA binds different single-stranded/double-stranded junction DNA substrates with a common surface. Comparisons of our NMR-based mapping of binding residues with the previously reported Rad14-DNA crystal structures revealed similarities and differences in substrate binding between XPA and Rad14. This includes direct evidence for DNA contacts to the residues extending C-terminally from the globular core, which are lacking in the Rad14 construct. Moreover, mutation of the XPA residue corresponding to Phe-262 in Rad14, previously reported as being critical for DNA binding, had only a moderate effect on the DNA-binding activity of XPA. The DNA-binding properties of several disease-associated mutations in the DBD were investigated. These results suggest that for XPA mutants exhibiting altered DNA-binding properties, a correlation exists between the extent of reduction in DNA-binding affinity and the severity of symptoms in XP patients.


Assuntos
Reparo do DNA , Proteína de Xeroderma Pigmentoso Grupo A/química , Substituição de Aminoácidos , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
11.
Chem Res Toxicol ; 31(9): 924-935, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169026

RESUMO

The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or ß deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and ß anomers exist in a 3:7 ratio, favoring the ß anomer. For the ß anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.


Assuntos
Adutos de DNA/toxicidade , DNA/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Cromatografia Líquida de Alta Pressão/métodos , DNA/química , Dano ao DNA , Reparo do DNA , Replicação do DNA , Eletroforese Capilar/métodos , Isomerismo , Conformação de Ácido Nucleico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Biochemistry ; 54(5): 1294-305, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25632825

RESUMO

5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.


Assuntos
Citosina/análogos & derivados , DNA/química , Oligonucleotídeos/química , 5-Metilcitosina/análogos & derivados , Citosina/química , Timina DNA Glicosilase/química
13.
Biochem Biophys Res Commun ; 459(1): 87-93, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25712527

RESUMO

Our recent study has shown that cellular junctions in myelin and in the epi-/perineruium that encase nerve fibers regulate the permeability of the peripheral nerves. This permeability may affect propagation of the action potential. Direct interactions between the PDZ1 domain of zonula occludens (ZO1 or ZO2) and the C-termini of claudins are known to be crucial for the formation of tight junctions. Using the purified PDZ1 domain of ZO2 and a variety of C-terminal mutants of peripheral nerve claudins (claudin-1, claudin-2, claudin-3, claudin-5 in epi-/perineurium; claudin-19 in myelin), we have utilized NMR spectroscopy to determine specific roles of the 3 C-terminal claudin residues (position -2, -1, 0) for their interactions with PDZ1 of ZO2. In contrast to the canonical model that emphasizes the importance of residues at the -2 and 0 positions, our results demonstrate that, for peripheral nerve claudins, the residue at position -1 plays a critical role in association with PDZ1, while the side-chain of residue 0 plays a significant but lesser role. Surprisingly, claudin-19, the most abundant claudin in myelin, exhibited no binding to ZO2. These findings reveal that the binding mechanism of claudin/ZO in epi-/perineurium is distinct from the canonical interactions between non-ZO PDZ-containing proteins with their ligands. This observation provides the molecular basis for a strategy to develop drugs that target tight junctions in the epi-/perineurium of peripheral nerves.


Assuntos
Claudinas/metabolismo , Nervos Periféricos/metabolismo , Proteína da Zônula de Oclusão-2/química , Motivos de Aminoácidos , Claudina-1/química , Claudina-1/genética , Claudina-1/metabolismo , Claudina-2/química , Claudina-2/metabolismo , Claudina-3/química , Claudina-3/metabolismo , Claudina-5/química , Claudina-5/metabolismo , Claudinas/química , Claudinas/genética , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo
14.
Biochemistry ; 53(41): 6439-51, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25263959

RESUMO

The spliceosome is a dynamic macromolecular machine composed of five small nuclear ribonucleoparticles (snRNPs), the NineTeen Complex (NTC), and other proteins that catalyze the removal of introns mature to form the mature message. The NTC, named after its founding member Saccharomyces cerevisiae Prp19, is a conserved spliceosome subcomplex composed of at least nine proteins. During spliceosome assembly, the transition to an active spliceosome correlates with stable binding of the NTC, although the mechanism of NTC function is not understood. Schizosaccharomyces pombe Cdc5, a core subunit of the NTC, is an essential protein required for pre-mRNA splicing. The highly conserved Cdc5 N-terminus contains two canonical Myb (myeloblastosis) repeats (R1 and R2) and a third domain (D3) that was previously classified as a Myb-like repeat. Although the N-terminus of Cdc5 is required for its function, how R1, R2, and D3 each contribute to functionality is unclear. Using a combination of yeast genetics, structural approaches, and RNA binding assays, we show that R1, R2, and D3 are all required for the function of Cdc5 in cells. We also show that the N-terminus of Cdc5 binds RNA in vitro. Structural and functional analyses of Cdc5-D3 show that, while this domain does not adopt a Myb fold, Cdc5-D3 preferentially binds double-stranded RNA. Our data suggest that the Cdc5 N-terminus interacts with RNA structures proposed to be near the catalytic core of the spliceosome.


Assuntos
Proteínas de Ciclo Celular/química , Modelos Moleculares , Splicing de RNA , RNA de Cadeia Dupla/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Schizosaccharomyces pombe/química , Spliceossomos/química , Sítios de Ligação , Domínio Catalítico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Deleção de Genes , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Titulometria
15.
J Biol Chem ; 288(29): 20797-20806, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23709224

RESUMO

Specialized cytochromes P450 or catalase-related hemoproteins transform fatty acid hydroperoxides to allene oxides, highly reactive epoxides leading to cyclopentenones and other products. The stereochemistry of the natural allene oxides is incompletely defined, as are the structural features required for their cyclization. We investigated the transformation of 9S-hydroperoxylinoleic acid with the allene oxide synthase CYP74C3, a reported reaction that unexpectedly produces an allene oxide-derived cyclopentenone. Using biphasic reaction conditions at 0 °C, we isolated the initial products and separated two allene oxide isomers by HPLC at -15 °C. One matched previously described allene oxides in its UV spectrum (λmax 236 nm) and NMR spectrum (defining a 9,10-epoxy-octadec-10,12Z-dienoate). The second was a novel stereoisomer (UV λmax 239 nm) with distinctive NMR chemical shifts. Comparison of NOE interactions of the epoxy proton at C9 in the two allene oxides (and the equivalent NOE experiment in 12,13-epoxy allene oxides) allowed assignment at the isomeric C10 epoxy-ene carbon as Z in the new isomer and the E configuration in all previously characterized allene oxides. The novel 10Z isomer spontaneously formed a cis-cyclopentenone at room temperature in hexane. These results explain the origin of the cyclopentenone, provide insights into the mechanisms of allene oxide cyclization, and define the double bond geometry in naturally occurring allene oxides.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Compostos de Epóxi/química , Compostos de Epóxi/isolamento & purificação , Linho/enzimologia , Ácidos Linoleicos/química , Ácidos Linoleicos/isolamento & purificação , Ácidos Linoleicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Ciclização , Ciclopentanos/química , Ciclopentanos/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Oxilipinas/química , Oxilipinas/metabolismo , Estereoisomerismo
16.
Biomol NMR Assign ; 18(1): 79-84, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564159

RESUMO

The lipocalin protein family is a structurally conserved group of proteins with a variety of biological functions defined by their ability to bind small molecule ligands and interact with partner proteins. One member of this family is siderocalin, a protein found in mammals. Its role is discussed in inflammatory processes, iron trafficking, protection against bacterial infections and oxidative stress, cell migration, induction of apoptosis, and cancer. Though it seems to be involved in numerous essential pathways, the exact mechanisms are often not fully understood. The NMR backbone assignments for the human siderocalin and its rat ortholog have been published before. In this work we describe the backbone NMR assignments of siderocalin for another important model organism, the mouse - data that might become important for structure-based drug discovery. Secondary structure elements were predicted based on the assigned backbone chemical shifts using TALOS-N and CSI 3.0, revealing a high content of beta strands and one prominent alpha helical region. Our findings correlate well with the known crystal structure and the overall conserved fold of the lipocalin family.


Assuntos
Lipocalinas , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Animais , Camundongos , Sequência de Aminoácidos , Lipocalina-2/química , Lipocalinas/química
17.
J Am Heart Assoc ; 13(10): e034364, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726919

RESUMO

BACKGROUND: Comprehensive blood lipoprotein profiles and their association with incident coronary heart disease (CHD) among racially and geographically diverse populations remain understudied. METHODS AND RESULTS: We conducted nested case-control studies of CHD among 3438 individuals (1719 pairs), including 1084 White Americans (542 pairs), 1244 Black Americans (622 pairs), and 1110 Chinese adults (555 pairs). We examined 36 plasma lipids, lipoproteins, and apolipoproteins, measured by nuclear magnetic resonance spectroscopy, with incident CHD among all participants and subgroups by demographics, lifestyle, and metabolic health status using conditional or unconditional logistic regression adjusted for potential confounders. Conventionally measured blood lipids, that is, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol, were each associated with incident CHD, with odds ratios (ORs) being 1.33, 1.32, 1.24, and 0.79 per 1-SD increase among all participants. Seventeen lipoprotein biomarkers showed numerically stronger associations than conventional lipids, with ORs per 1-SD among all participants ranging from 1.35 to 1.57 and a negative OR of 0.78 (all false discovery rate <0.05), including apolipoprotein B100 to apolipoprotein A1 ratio (OR, 1.57 [95% CI, 1.45-1.7]), low-density lipoprotein-triglycerides (OR, 1.55 [95% CI, 1.43-1.69]), and apolipoprotein B (OR, 1.49 [95% CI, 1.37-1.62]). All these associations were significant and consistent across racial groups and other subgroups defined by age, sex, smoking, obesity, and metabolic health status, including individuals with normal levels of conventionally measured lipids. CONCLUSIONS: Our study highlighted several lipoprotein biomarkers, including apolipoprotein B/ apolipoprotein A1 ratio, apolipoprotein B, and low-density lipoprotein-triglycerides, strongly and consistently associated with incident CHD. Our results suggest that comprehensive lipoprotein measures may complement the standard lipid panel to inform CHD risk among diverse populations.


Assuntos
Apolipoproteínas , Biomarcadores , Negro ou Afro-Americano , Doença das Coronárias , Lipoproteínas , População Branca , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Doença das Coronárias/etnologia , Doença das Coronárias/diagnóstico , Estudos Prospectivos , Estudos de Casos e Controles , Lipoproteínas/sangue , Idoso , Apolipoproteínas/sangue , Biomarcadores/sangue , Lipídeos/sangue , Incidência , Asiático/estatística & dados numéricos , Adulto , Estados Unidos/epidemiologia , Fatores de Risco , Medição de Risco , Espectroscopia de Ressonância Magnética , Triglicerídeos/sangue
18.
Nat Commun ; 15(1): 473, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212624

RESUMO

Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.


Assuntos
Domínio Catalítico , Estrutura Secundária de Proteína
19.
Biochemistry ; 52(43): 7659-68, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24131376

RESUMO

A cationic 7-aminomethyl-7-deaza-2'-deoxyguanosine (7amG) was incorporated site-specifically into the self-complementary duplex d(G¹A²G³A4X5C6G7C8T9C¹°T¹¹C¹²)2 (X = 7amG). This construct placed two positively charged amines adjacent to the major groove edges of two symmetry-related guanines, providing a model for probing how cation binding in the major groove modulates the structure and stability of DNA. Molecular dynamics calculations restrained by nuclear magnetic resonance (NMR) data revealed that the tethered cationic amines were in plane with the modified base pairs. The tethered amines did not form salt bridges to the phosphodiester backbone. There was also no indication of the amines being capable of hydrogen bonding to flanking DNA bases. NMR spectroscopy as a function of temperature revealed that the X5 imino resonance remained sharp at 55 °C. Additionally, two 5'-neighboring base pairs, A4:T9 and G³:C¹°, were stabilized with respect to the exchange of their imino protons with solvent. The equilibrium constant for base pair opening at the A4:T9 base pair determined by magnetization transfer from water in the absence and presence of added ammonia base catalyst decreased for the modified duplex compared to that of the A4:T9 base pair in the unmodified duplex, which confirmed that the overall fraction of the A4:T9 base pair in the open state of the modified duplex decreased. This was also observed for the G³:C¹° base pair, where αK(op) for the G³:C¹° base pair in the modified duplex was 3.0 × 106 versus 4.1 × 106 for the same base pair in the unmodified duplex. In contrast, equilibrium constants for base pair opening at the X5:C8 and C6:G7 base pairs did not change at 15 °C. These results argue against the notion that electrostatic interactions with DNA are entirely entropic and suggest that major groove cations can stabilize DNA via enthalpic contributions to the free energy of duplex formation.


Assuntos
DNA/química , Modelos Moleculares , Nucleosídeo Q/análogos & derivados , Oligodesoxirribonucleotídeos/química , Cinética , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Nucleosídeo Q/química , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/síntese química , Termodinâmica
20.
Biochem Biophys Res Commun ; 440(1): 173-8, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24055875

RESUMO

SVIP (small p97/VCP-interacting protein) was initially identified as one of many cofactors regulating the valosin containing protein (VCP), an AAA+ ATPase involved in endoplasmic-reticulum-associated protein degradation (ERAD). Our previous study showed that SVIP is expressed exclusively in the nervous system. In the present study, SVIP and VCP were seen to be co-localized in neuronal cell bodies. Interestingly, we also observed that SVIP co-localizes with myelin basic protein (MBP) in compact myelin, where VCP was absent. Furthermore, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopic measurements, we determined that SVIP is an intrinsically disordered protein (IDP). However, upon binding to the surface of membranes containing a net negative charge, the helical content of SVIP increases dramatically. These findings provide structural insight into interactions between SVIP and myelin membranes.


Assuntos
Proteínas de Transporte/análise , Proteínas de Membrana/análise , Proteínas Nucleares/análise , Sequência de Aminoácidos , Animais , Ânions/química , Proteínas de Transporte/genética , DNA Complementar/genética , Escherichia coli/genética , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas de Ligação a Fosfato , Plasmídeos/genética , Estrutura Secundária de Proteína , Ratos , Nervo Isquiático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA