Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2221413120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433002

RESUMO

Effects of micronutrients on brain connectivity are incompletely understood. Analyzing human milk samples across global populations, we identified the carbocyclic sugar myo-inositol as a component that promotes brain development. We determined that it is most abundant in human milk during early lactation when neuronal connections rapidly form in the infant brain. Myo-inositol promoted synapse abundance in human excitatory neurons as well as cultured rat neurons and acted in a dose-dependent manner. Mechanistically, myo-inositol enhanced the ability of neurons to respond to transsynaptic interactions that induce synapses. Effects of myo-inositol in the developing brain were tested in mice, and its dietary supplementation enlarged excitatory postsynaptic sites in the maturing cortex. Utilizing an organotypic slice culture system, we additionally determined that myo-inositol is bioactive in mature brain tissue, and treatment of organotypic slices with this carbocyclic sugar increased the number and size of postsynaptic specializations and excitatory synapse density. This study advances our understanding of the impact of human milk on the infant brain and identifies myo-inositol as a breast milk component that promotes the formation of neuronal connections.


Assuntos
Aleitamento Materno , Leite Humano , Feminino , Lactente , Humanos , Animais , Camundongos , Ratos , Neurônios , Inositol/farmacologia , Açúcares
2.
Cereb Cortex ; 30(1): 226-240, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31034037

RESUMO

Brain development is likely impacted by micronutrients. This is supported by the effects of the ω-3 fatty acid docosahexaenoic acid (DHA) during early neuronal differentiation, when it increases neurite growth. Aiming to delineate DHA roles in postnatal stages, we selected the visual cortex due to its stereotypic maturation. Immunohistochemistry showed that young mice that received dietary DHA from birth exhibited more abundant presynaptic and postsynaptic specializations. DHA also increased density and size of synapses in a dose-dependent manner in cultured neurons. In addition, dendritic arbors of neurons treated with DHA were more complex. In agreement with improved connectivity, DHA enhanced physiological parameters of network maturation in vitro, including bursting strength and oscillatory behavior. Aiming to analyze functional maturation of the cortex, we performed in vivo electrophysiological recordings from awake mice to measure responses to patterned visual inputs. Dietary DHA robustly promoted the developmental increase in visual acuity, without altering light sensitivity. The visual acuity of DHA-supplemented animals continued to improve even after their cortex had matured and DHA abolished the acuity plateau. Our findings show that the ω-3 fatty acid DHA promotes synaptic connectivity and cortical processing. These results provide evidence that micronutrients can support the maturation of neuronal networks.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/crescimento & desenvolvimento , Animais , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/citologia , Acuidade Visual/fisiologia
3.
J Biotechnol ; 173: 86-9, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24452099

RESUMO

The chicken is a well-established model system for studying developmental biology and is recognized as one of the top food production animals in the world. For this reason the chicken is an excellent candidate for transgenic applications, as the technology can be applied to both areas of research. Transgenic technology has not been broadly utilized in the chicken model, however, primarily due to difficulties in targeting germ cells and establishing germ line transmission. Transgenic technologies using non-replicating viral particles have been used in the chick, but are unsuitable for many applications because of size and sequence restraints and low efficiency. To create a more versatile method to target chick germ line stem cells, we utilized the transposable element system piggyBac paired with an in vivo transfection reagent, JetPEI. piggyBac has been previously shown to be highly active in mammalian cells and will transpose into the chicken genome. Here, we show that JetPEI can transfect multiple chick cell types, most notably germline stem cells. We also show that pairing these two reagents is a viable and reproducible method for long-term expression of a transgene in the chicken. Stable expression of the green fluorescent protein (GFP) transgene was seen in multiple tissue types including heart, brain, liver, intestine, kidney and gonad. Combining an in vivo transfection strategy with the PB system provides a simple and flexible method for efficiently producing stable chimeric birds and could be used for production of germ line transgenics.


Assuntos
Galinhas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Fluorescência Verde/metabolismo , Transfecção/métodos , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Genoma , Células Germinativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA