Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(22): 11807-11825, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722427

RESUMO

Modifications of ribosomal RNA expand the nucleotide repertoire and thereby contribute to ribosome heterogeneity and translational regulation of gene expression. One particular m5C modification of 25S ribosomal RNA, which is introduced by Rcm1p, was previously shown to modulate stress responses and lifespan in yeast and other small organisms. Here, we report that NSUN5 is the functional orthologue of Rcm1p, introducing m5C3782 into human and m5C3438 into mouse 28S ribosomal RNA. Haploinsufficiency of the NSUN5 gene in fibroblasts from William Beuren syndrome patients causes partial loss of this modification. The N-terminal domain of NSUN5 is required for targeting to nucleoli, while two evolutionary highly conserved cysteines mediate catalysis. Phenotypic consequences of NSUN5 deficiency in mammalian cells include decreased proliferation and size, which can be attributed to a reduction in total protein synthesis by altered ribosomes. Strikingly, Nsun5 knockout in mice causes decreased body weight and lean mass without alterations in food intake, as well as a trend towards reduced protein synthesis in several tissues. Together, our findings emphasize the importance of single RNA modifications for ribosome function and normal cellular and organismal physiology.


Assuntos
Crescimento e Desenvolvimento/genética , Metiltransferases/genética , Proteínas Musculares/genética , Biossíntese de Proteínas/genética , Animais , Peso Corporal/genética , Crescimento Celular , Proliferação de Células/genética , Células Cultivadas , Criança , Embrião de Mamíferos , Feminino , Deleção de Genes , Células HEK293 , Células HeLa , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Exp Dermatol ; 25(3): 212-7, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26663487

RESUMO

Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing.


Assuntos
Colagenases/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Terapia PUVA/métodos , Fatores de Processamento de RNA/genética , Envelhecimento da Pele/fisiologia , Pele/metabolismo , Senilidade Prematura , Animais , Senescência Celular , Colágeno/metabolismo , Dano ao DNA , Epiderme/metabolismo , Feminino , Genótipo , Heterozigoto , Histonas/metabolismo , Masculino , Metoxaleno/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Processamento de RNA/metabolismo
3.
Acta Orthop ; 86(1): 92-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25175665

RESUMO

BACKGROUND AND PURPOSE: We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS: PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that influence cellular and organism senescence, (3) microRNAs in age-related musculoskeletal conditions, and (4) the diagnostic and therapeutic potential of microRNAs in age-related musculoskeletal conditions. RESULTS: An increasing number of studies have identified microRNAs associated with cellular aging and tissue degeneration. Specifically in regard to frailty, microRNAs have been found to influence the onset and course of age-related musculoskeletal conditions such as osteoporosis, osteoarthritis, and posttraumatic arthritis. Both intracellular and extracellular microRNAs may be suitable to function as diagnostic biomarkers. INTERPRETATION: The research data currently available suggest that microRNAs play an important role in orchestrating age-related processes and conditions of the musculoskeletal system. Further research may help to improve our understanding of the complexity of these processes at the cellular and extracellular level. The option to develop microRNA biomarkers and novel therapeutic agents for the degenerating diseases of bone and cartilage appears to be promising.


Assuntos
Envelhecimento/genética , Doenças das Cartilagens/genética , Senescência Celular/genética , MicroRNAs/fisiologia , Osteoartrite/genética , Osteoporose/genética , Doenças Ósseas/genética , Humanos
4.
Biogerontology ; 15(3): 269-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664125

RESUMO

MicroRNAs, regulators of messenger RNA translation, have been observed to influence many physiological processes, amongst them the process of aging. Higher levels of microRNA-663 (miR-663) have previously been observed in human dermal fibroblasts subject to both replicative and stress-induced senescence compared to early passage cells. Also, higher levels of miR-663 have been found in memory T-cells and in human fibroblasts derived from older donors compared to younger donors. In previous studies we observed that dermal fibroblasts from donors of different chronological and biological age respond differentially to oxidative stress measured by markers of cellular senescence and apoptosis. In the present study we set out to study the association between miR-663 levels and chronological and biological age. Therefore we tested in a total of 92 human dermal fibroblast strains whether the levels of miR-663 in non-stressed and stressed conditions (fibroblasts were treated with 0.6 µM rotenone in stressed conditions) were different in young, middle aged and old donors and whether they were different in middle aged donors dependent on their biological age, as indicated by the propensity for familial longevity. In non-stressed conditions the level of miR-663 did not differ between donors of different age categories and was not dependent on biological age. Levels of miR-663 did not differ dependent on biological age in stressed conditions either. However, for different age categories the level of miR-663 in stressed conditions did differ: the level of miR-663 was higher at higher age categories. Also, the ratio of miR-663 induction upon stress was significantly higher in donors from older age categories. In conclusion, we present evidence for an association of miR-663 upon stress and chronological age.


Assuntos
Envelhecimento/genética , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Derme/citologia , Feminino , Fibroblastos/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Front Cell Dev Biol ; 12: 1411582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144254

RESUMO

The intricate interplay between the developing placenta and fetal-maternal interactions is critical for pregnancy outcomes. Despite advancements, gaps persist in understanding biomechanics, transport processes, and blood circulation parameters, all of which are crucial for safe pregnancies. Moreover, the complexity of fetal-maternal interactions led to conflicting data and methodological variations. This review presents a comprehensive overview of current knowledge on fetal-maternal interface structures, with a particular focus on the first trimester. More in detail, the embryological development, structural characteristics, and physiological functions of placental chorionic plate and villi, fetal membranes and umbilical cord are discussed. Furthermore, a description of the main structures and features of maternal and fetal fluid dynamic exchanges is provided. However, ethical constraints and technological limitations pose still challenges to studying early placental development directly, which calls for sophisticated in vitro, microfluidic organotypic models for advancing our understanding. For this, knowledge about key in vivo parameters are necessary for their design. In this scenario, the integration of data from later gestational stages and mathematical/computational simulations have proven to be useful tools. Notwithstanding, further research into cellular and molecular mechanisms at the fetal-maternal interface is essential for enhancing prenatal care and improving maternal and fetal health outcomes.

6.
Toxicol In Vitro ; 98: 105826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615723

RESUMO

Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Transcriptoma , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Transcriptoma/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Cultivadas
7.
J Virol ; 86(19): 10327-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22787205

RESUMO

Monocyte-derived macrophages (MDM) are widely distributed in all tissues and organs, including the central nervous system, where they represent the main part of HIV-infected cells. In contrast to activated CD4(+) T lymphocytes, MDM are resistant to cytopathic effects and survive HIV infection for a long period of time. The molecular mechanisms of how HIV is able to persist in macrophages are not fully elucidated yet. In this context, we have studied the effect of in vitro HIV-1 infection on telomerase activity (TA), telomere length, and DNA damage. Infection resulted in a significant induction of TA. This increase was directly proportional to the efficacy of HIV infection and was found in both nuclear and cytoplasmic extracts, while neither UV light-inactivated HIV nor exogenous addition of the viral protein Tat or gp120 affected TA. Furthermore, TA was not modified during monocyte-macrophage differentiation, MDM activation, or infection with vaccinia virus. HIV infection did not affect telomere length. However, HIV-infected MDM showed less DNA damage after oxidative stress than noninfected MDM, and this resistance was also increased by overexpressing telomerase alone. Taken together, our results suggest that HIV induces TA in MDM and that this induction might contribute to cellular protection against oxidative stress, which could be considered a viral strategy to make macrophages better suited as longer-lived, more resistant viral reservoirs. In the light of the clinical development of telomerase inhibitors as anticancer therapeutics, inhibition of TA in HIV-infected macrophages might also represent a novel therapeutic target against viral reservoirs.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Telomerase/biossíntese , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dano ao DNA , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Estresse Oxidativo , Fenótipo , Telomerase/metabolismo , Telômero/ultraestrutura
8.
Biochem J ; 438(1): 81-91, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21639856

RESUMO

The Cdc5L (cell division cycle 5-like) complex is a spliceosomal subcomplex that also plays a role in DNA repair. The complex contains the splicing factor hPrp19, also known as SNEV or hPso4, which is involved in cellular life-span regulation and proteasomal breakdown. In a recent large-scale proteomics analysis for proteins associated with this complex, proteins involved in transcription, cell-cycle regulation, DNA repair, the ubiquitin-proteasome system, chromatin remodelling, cellular aging, the cytoskeleton and trafficking, including four members of the exocyst complex, were identified. In the present paper we report that Exo70 interacts directly with SNEV(hPrp19/hPso4) and shuttles to the nucleus, where it associates with the spliceosome. We mapped the interaction site to the N-terminal 100 amino acids of Exo70, which interfere with pre-mRNA splicing in vitro. Furthermore, Exo70 influences the splicing of a model substrate as well as of its own pre-mRNA in vivo. In addition, we found that Exo70 is alternatively spliced in a cell-type- and cell-age- dependent way. These results suggest a novel and unexpected role of Exo70 in nuclear mRNA splicing, where it might signal membrane events to the splicing apparatus.


Assuntos
Processamento Alternativo , Núcleo Celular/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Spliceossomos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Imunofluorescência , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Ligação Proteica , Fatores de Processamento de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
9.
J Am Soc Nephrol ; 22(7): 1221-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21636641

RESUMO

Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Túbulos Renais/citologia , Urina/citologia , Idoso , Feminino , Técnicas de Transferência de Genes , Humanos , Masculino , Adulto Jovem
10.
Am J Physiol Renal Physiol ; 301(5): F1014-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21816755

RESUMO

Matricellular proteins in the kidney have been associated with the development of tubulointerstitial fibrogenesis and the progression of renal disease. This study investigated potential antifibrotic effects of the cytokine oncostatin M (OSM) in human proximal tubule cells (PTC), particularly with regard to inhibition of profibrotic events initiated by TGF-ß1. In human PTC, OSM diminished transforming growth factor (TGF)-ß1-induced expression of the transcriptional epithelial-mesenchymal transition mediator FoxC2. Furthermore, exposure to OSM attenuated basal and TGF-ß1-induced expression of the matricellular proteins SPARC, TSP-1, TNC, and CTGF regardless of the sequence of ligand administration. OSM was shown to result in rapid and sustained phosphorylation of both Stat1 and Stat3 and also in transient phosphorylation of Smad2/3 in contrast to TGF-ß1, which demonstrated a gradually building phosphorylation of Smad2/3 and a brief phosphorylation of Smad1/5/8. Utilizing receptor-blocking molecules, we found the inhibitory effect of OSM on TGF-ß1-induced CTGF mRNA expression occurs independently of Smad2/3 signaling and present evidence that this effect may be partially driven by OSM receptor-mediated Stat1 and/or Stat3 signaling pathways, thereby providing a mechanism whereby OSM can contribute to tubulointerstitial protection.


Assuntos
Antineoplásicos/farmacologia , Proteínas da Matriz Extracelular/biossíntese , Oncostatina M/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Western Blotting , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Metilação de DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibrose/prevenção & controle , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Ligantes , Osteonectina/metabolismo , Fosforilação , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Oncostatina M/antagonistas & inibidores , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas Smad/metabolismo , Tenascina/metabolismo , Trombospondina 1/metabolismo
11.
Cell Immunol ; 267(1): 30-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21145536

RESUMO

Mesenchymal stem cells (MSCs) possess immunosuppressive properties. But also fully differentiated human renal tubular epithelial cells (RTECs) are able to modulate T-cell proliferation in vitro. In this study we compared two MSC populations, human adipose derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs), and RTECs regarding their potential to inhibit monocyte-derived dendritic cell (DC) differentiation and maturation in indirect co-culture. In the presence of hAMSCs and RTECs, monocytes stimulated to undergo DC differentiation were inhibited to acquire surface phenotype of immature and mature DCs. In contrast, ASCs showed only limited suppressive capacity. Secretion of IL-12p70 was suppressed in hAMSC co-cultures and high IL-10 levels were detected in all co-cultures. Prostaglandin E(2) was found in ASC and hAMSC co-cultures, whereas soluble human leukocyte antigen-G was highly elevated only in RTEC co-cultures. Thus, inhibition of DC generation by MSCs and RTECs might be mediated by different soluble factors.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Túbulos Renais/imunologia , Células-Tronco Mesenquimais/imunologia , Monócitos/imunologia , Adulto , Sobrevivência Celular , Técnicas de Cocultura , Feminino , Antígenos HLA/imunologia , Antígenos HLA-G , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-12/biossíntese , Interleucina-12/imunologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Monócitos/citologia , Adulto Jovem
12.
J Biol Chem ; 284(42): 29193-204, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19641227

RESUMO

The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Processamento Alternativo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Escherichia coli/genética , Células HeLa , Humanos , Íntrons , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Mol Cancer Res ; 7(3): 339-53, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19240181

RESUMO

Immune-cell-based approaches using cytotoxic and dendritic cells are under constant scrutiny to design novel therapies for the treatment of tumors. These strategies are hampered by the lack of efficient and economical large-scale production methods for effector cells. Here we describe the propagation of large amounts of a unique population of CD4(+) cytotoxic T cells, which we termed tumor killer T cells (TKTC), because of their potent and broad antitumor cell activity. With this cultivation strategy, TKTCs from peripheral blood mononuclear cells are generated within a short period of time using a pulse with a stimulating cell line followed by continuous growth in serum-free medium supplemented with a mixture of interleukin-2 and cyclosporin A. Expression and functional profiling did not allow a classification of TKTCs to any thus far defined subtype of T cells. Cytotoxic assays showed that TKTCs kill a panel of tumor targets of diverse tissue origin while leaving normal cells unaffected. Blocking experiments revealed that TKTC killing was, to a significant extent, mediated by tumor necrosis factor-related apoptosis-inducing ligand and was independent of MHC restriction. These results suggest that TKTCs have a high potential as a novel tool in the adoptive immunotherapy of cancer.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos/imunologia , Animais , Apoptose/imunologia , Antígenos CD4/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Citotoxicidade Imunológica/imunologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Camundongos , Neoplasias da Próstata/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
14.
Biogerontology ; 11(4): 501-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20437201

RESUMO

The miR-17-92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17-92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17-92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans.


Assuntos
Envelhecimento/genética , MicroRNAs/genética , Família Multigênica , Neoplasias/genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Transcrição Gênica
15.
Mol Cell Biol ; 27(8): 3123-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17283042

RESUMO

SNEV (Prp19, Pso4, NMP200) is a nuclear matrix protein known to be involved in pre-mRNA splicing, ubiquitylation, and DNA repair. In human umbilical vein endothelial cells, SNEV overexpression delayed the onset of replicative senescence. Here we analyzed the function of the mouse SNEV gene in vivo by employing homologous recombination in mice and conclude that SNEV is indispensable for early mouse development. Mutant preimplantation embryos initiated blastocyst formation but died shortly thereafter. Outgrowth of SNEV-null blastocysts showed a lack of proliferation of cells of the inner cell mass, which subsequently underwent cell death. While SNEV-heterozygous mice showed no overt phenotype, heterozygous mouse embryonic fibroblast cell lines with reduced SNEV levels displayed a decreased proliferative potential in vitro. Our experiments demonstrate that the SNEV protein is essential, functionally nonredundant, and indispensable for mouse development.


Assuntos
Embrião de Mamíferos/patologia , Proteínas Associadas à Matriz Nuclear/deficiência , Proteínas Nucleares/deficiência , Animais , Blastocisto/citologia , Proliferação de Células , Cruzamentos Genéticos , Feminino , Morte Fetal , Fibroblastos/citologia , Regulação da Expressão Gênica , Marcação de Genes , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína
16.
Biochem J ; 419(1): 83-90, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19040401

RESUMO

Some thirty years ago, work on mammalian tissues suggested the presence of two cytosolic hexosaminidases in mammalian cells; one of these has been more recently characterized in a recombinant form and has an important role in cellular function due to its ability to cleave beta-N-acetylglucosamine residues from a variety of nuclear and cytoplasmic proteins. However, the molecular nature of the second cytosolic hexosaminidase, named hexosaminidase D, has remained obscure. In the present study, we molecularly characterize for the first time the human and murine recombinant forms of enzymes, encoded by HEXDC genes, which appear to correspond to hexosaminidase D in terms of substrate specificity, pH dependency and temperature stability. Furthermore, a Myc-tagged form of this novel hexosaminidase displays a nucleocytoplasmic localization. Transcripts of the corresponding gene are expressed in a number of murine tissues. On the basis of its sequence, this enzyme represents, along with the lysosomal hexosaminidase subunits encoded by the HEXA and HEXB genes, the third class 20 glycosidase to be identified from mammalian sources.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Hexosaminidases/química , Hexosaminidases/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Perfilação da Expressão Gênica , Hexosaminidases/genética , Humanos , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Células NIH 3T3 , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
17.
Adv Exp Med Biol ; 694: 172-96, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20886764

RESUMO

Ubiquitination ofendogenous proteins is one of the key regulatory steps that guides protein degradation through regulation of proteasome activity. During the last years evidence has accumulated that proteasome activity is decreased during the aging process in various model systems and that these changes might be causally related to aging and age-associated diseases. Since in most instances ubiquitination is the primary event in target selection, the system ofubiquitination and deubiquitination might be of similar importance. Furthermore, ubiquitination and proteasomal degradation are not completely congruent, since ubiquitination confers also functions different from targeting proteins for degradation. Depending on mono- and polyubiquitination and on how ubiquitin chains are linked together, post-translational modifications of cellular proteins by covalent attachment of ubiquitin and ubiquitin-like proteins are involved in transcriptional regulation, receptor internalization, DNA repair, stabilization of protein complexes and autophagy. Here, we summarize the current knowledge regarding the ubiquitinome and the underlying ubiquitin ligases and deubiquitinating enzymes in replicative senescence, tissue aging as well as in segmental progeroid syndromes and discuss potential causes and consequences for aging.


Assuntos
Senescência Celular/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
18.
Nucleic Acids Res ; 35(22): 7566-76, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18083760

RESUMO

Impaired DNA damage repair, especially deficient transcription-coupled nucleotide excision repair, leads to segmental progeroid syndromes in human patients as well as in rodent models. Furthermore, DNA double-strand break signalling has been pinpointed as a key inducer of cellular senescence. Several recent findings suggest that another DNA repair pathway, interstrand cross-link (ICL) repair, might also contribute to cell and organism aging. Therefore, we summarize and discuss here that (i) systemic administration of anti-cancer chemotherapeutics, in many cases DNA cross-linking drugs, induces premature progeroid frailty in long-term survivors; (ii) that ICL-inducing 8-methoxy-psoralen/UVA phototherapy leads to signs of premature skin aging as prominent long-term side effect and (iii) that mutated factors involved in ICL repair like ERCC1/XPF, the Fanconi anaemia proteins, WRN and SNEV lead to reduced replicative life span in vitro and segmental progeroid syndromes in vivo. However, since ICL-inducing drugs cause damage different from ICL and since all currently known ICL repair factors work in more than one pathway, further work will be needed to dissect the actual contribution of ICL damage to aging.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Dano ao DNA , Envelhecimento/metabolismo , Senilidade Prematura/induzido quimicamente , Animais , Antineoplásicos/efeitos adversos , Reagentes de Ligações Cruzadas/efeitos adversos , Reparo do DNA , Ficusina/efeitos adversos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Envelhecimento da Pele
19.
PLoS One ; 14(4): e0214514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958843

RESUMO

The kidney is especially sensitive to diseases associated with overactivation of the complement system. While most of these diseases affect kidney glomeruli and the microvasculature, there is also evidence for tubulointerstitial deposition of complement factors. Complement inactivating factors on cell membranes comprise CD55, CD59 and CD46, which is also termed membrane cofactor protein (MCP). CD46 has been described as localized to glomeruli, but especially also to proximal tubular epithelial cells (RPTECs). However, human cell culture models to assess CD46 function on RPTECs are still missing. Therefore, we here performed gene editing of RPTEC/TERT1 cells generating a monoclonal CD46-/- cell line that did not show changes of the primary cell like characteristics. In addition, factor I and CD46-mediated cleavage of C4b into soluble C4c and membrane deposited C4d was clearly reduced in the knock-out cell line as compared to the maternal cells. Thus, human CD46-/- proximal tubular epithelial cells will be of interest to dissect the roles of the epithelium and the kidney in various complement activation mediated tubulointerstitial pathologies or in studying CD46 mediated uropathogenic internalization of bacteria. In addition, this gives proof-of-principle, that telomerized cells can be used in the generation of knock-out, knock-in or any kind of reporter cell lines without losing the primary cell characteristics of the maternal cells.


Assuntos
Sistemas CRISPR-Cas , Ativação do Complemento , Células Epiteliais/citologia , Técnicas de Inativação de Genes , Proteína Cofatora de Membrana/genética , Telomerase/metabolismo , Linhagem Celular , Complemento C4/química , Complemento C4b/química , Edição de Genes , Humanos , Túbulos Renais/citologia , Telômero/ultraestrutura , gama-Glutamiltransferase/metabolismo
20.
Eur J Cancer ; 44(6): 866-75, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296042

RESUMO

Maintenance of telomere length has been reported to be an absolute requirement for unlimited growth of human tumour cells and in about 85% of cases, this is achieved by reactivation of telomerase, the enzyme that elongates telomeres. Only in rare cases, like in human medullary thyroid carcinomas (MTC), telomerase activity (TA) is low or undetectable; however, this does not limit tumours to become clinically significant. Here, we report that very low TA (below 5% of HEK293) observed in MTC cell strains derived from different patients, although not sufficient for immortalising the cells, is necessary for prolonging their replicative life span. Telomere erosion led to induction of a crisis period after long-term in vitro cultivation, which was reached earlier when treating the cells with MST-312, a telomerase inhibitor at non-toxic concentrations. Crisis was bypassed either by ectopic hTERT introduction or by infrequent spontaneous immortalisation, the latter of which was always associated with telomerase reactivation and changes of the cellular phenotype. While confirming the high importance of telomerase for tumour development, these data draw attention to the relevance of low TA: although insufficient for telomere stabilisation, it allows MTC cells to reach more population doublings, increasing both cell numbers as well as the risk of accumulating mutations and thus might support the development of clinically significant MTC.


Assuntos
Carcinoma Medular/enzimologia , Proteínas de Neoplasias/metabolismo , Telomerase/metabolismo , Neoplasias da Glândula Tireoide/enzimologia , Carcinoma Medular/patologia , Progressão da Doença , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Telômero/patologia , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA