Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 333-341, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117480

RESUMO

The envisaged future dihydrogen (H2) economy requires a H2 gas grid as well as large deep underground stores. However, the consequences of an unintended spread of H2 through leaky pipes, wells, or subterranean gas migrations on groundwater resources and their ecosystems are poorly understood. Therefore, we emulated a short-term leakage incident by injecting gaseous H2 into a shallow aquifer at the TestUM test site and monitored the subsequent biogeochemical processes in the groundwater system. At elevated H2 concentrations, an increase in acetate concentrations and a decrease in microbial α-diversity with a concomitant change in microbial ß-diversity were observed. Additionally, microbial H2 oxidation was indicated by temporally higher abundances of taxa known for aerobic or anaerobic H2 oxidation. After H2 concentrations diminished below the detection limit, α- and ß-diversity approached baseline values. In summary, the emulated H2 leakage resulted in a temporally limited change of the groundwater microbiome and associated geochemical conditions due to the intermediate growth of H2 consumers. The results confirm the general assumption that H2, being an excellent energy and electron source for many microorganisms, is quickly microbiologically consumed in the environment after a leakage.


Assuntos
Água Subterrânea , Microbiota , Água Subterrânea/química , Hidrogênio , Oxirredução
2.
J Environ Manage ; 366: 121893, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025004

RESUMO

This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.

3.
Environ Microbiol ; 24(1): 370-389, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859568

RESUMO

High-Temperature Aquifer Thermal Energy Storage (HT-ATES) is a sustainable approach for integrating thermal energy from various sources into complex energy systems. Temperatures ≥45°C, which are relevant in impact zones of HT-ATES systems, may dramatically influence the structure and activities of indigenous aquifer microbial communities. Here, we characterized an acetate-mineralizing, sulfate-reducing microbial community derived from an aquifer and adapted to 45°C. Acetate mineralization was strongly inhibited at temperatures ≤25°C and 60°C. Prolonged incubation at 12°C and 25°C resulted in acetate mineralization recovery after 40-80 days whereas acetate was not mineralized at 60°C within 100 days. Cultures pre-grown at 45°C and inhibited for 28 days by incubation at 12°C, 25°C, or 60°C recovered quickly after changing the temperature back to 45°C. Phylotypes affiliated to the order Spirochaetales and to endospore-forming sulfate reducers of the order Clostridiales were highly abundant in microcosms being active at 45°C highlighting their key role. In summary, prolonged incubation at 45°C resulted in active microbial communities mainly consisting of organisms adapted to temperatures between the typical temperature range of mesophiles and thermophiles and being resilient to temporary heat changes.


Assuntos
Água Subterrânea , Microbiota , Acetatos , Biodegradação Ambiental , Temperatura Alta
4.
Environ Microbiol ; 24(2): 583-595, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34190386

RESUMO

Carbon and hydrogen stable isotope effects associated with methane formation by the corrosive archaeon Methanobacterium strain IM1 were determined during growth with hydrogen and iron. Isotope analyses were complemented by structural, elemental and molecular composition analyses of corrosion crusts. During growth with H2 , strain IM1 formed methane with average δ13 C of -43.5‰ and δ2 H of -370‰. Corrosive growth led to methane more depleted in 13 C, with average δ13 C ranging from -56‰ to -64‰ during the early and the late growth phase respectively. The corresponding δ2 H were less impacted by the growth phase, with average values ranging from -316 to -329‰. The stable isotope fractionation factors, α 13 C CO 2 / CH 4 , were 1.026 and 1.042 for hydrogenotrophic and corrosive growth respectively. Corrosion crusts formed by strain IM1 have a domed structure, appeared electrically conductive and were composed of siderite, calcite and iron sulfide, the latter formed by precipitation of sulfide (from culture medium) with ferrous iron generated during corrosion. Strain IM1 cells were found attached to crust surfaces and encrusted deep inside crust domes. Our results may assist to diagnose methanogens-induced corrosion in the field and suggest that intrusion of sulfide in anoxic settings may stimulate corrosion by methanogenic archaea via formation of semiconductive crusts.


Assuntos
Archaea , Euryarchaeota , Isótopos de Carbono/análise , Corrosão , Ferro , Isótopos , Metano
5.
J Appl Microbiol ; 132(4): 2795-2811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995421

RESUMO

AIMS: How benzene is metabolized by microbes under anoxic conditions is not fully understood. Here, we studied the degradation pathways in a benzene-mineralizing, nitrate-reducing enrichment culture. METHODS AND RESULTS: Benzene mineralization was dependent on the presence of nitrate and correlated to the enrichment of a Peptococcaceae phylotype only distantly related to known anaerobic benzene degraders of this family. Its relative abundance decreased after benzene mineralization had terminated, while other abundant taxa-Ignavibacteriaceae, Rhodanobacteraceae and Brocadiaceae-slightly increased. Generally, the microbial community remained diverse despite the amendment of benzene as single organic carbon source, suggesting complex trophic interactions between different functional groups. A subunit of the putative anaerobic benzene carboxylase previously detected in Peptococcaceae was identified by metaproteomic analysis suggesting that benzene was activated by carboxylation. Detection of proteins involved in anaerobic ammonium oxidation (anammox) indicates that benzene mineralization was accompanied by anammox, facilitated by nitrite accumulation and the presence of ammonium in the growth medium. CONCLUSIONS: The results suggest that benzene was activated by carboxylation and further assimilated by a novel Peptococcaceae phylotype. SIGNIFICANCE AND IMPACT OF THE STUDY: The results confirm the hypothesis that Peptococcaceae are important anaerobic benzene degraders.


Assuntos
Microbiota , Nitratos , Anaerobiose , Benzeno/metabolismo , Nitratos/metabolismo , Oxirredução , Peptococcaceae/metabolismo
6.
Neuropediatrics ; 52(3): 155-162, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33445192

RESUMO

The uptake of the QbTest in clinical practice is increasing and has recently been supported by research evidence proposing its effectiveness in relation to clinical decision-making. However, the exact underlying process leading to this clinical benefit is currently not well established and requires further clarification. For the clinician, certain challenges arise when adding the QbTest as a novel method to standard clinical practice, such as having the skills required to interpret neuropsychological test information and assess for diagnostically relevant neurocognitive domains that are related to attention-deficit hyperactivity disorder (ADHD), or how neurocognitive domains express themselves within the behavioral classifications of ADHD and how the quantitative measurement of activity in a laboratory setting compares with real-life (ecological validity) situations as well as the impact of comorbidity on test results. This article aims to address these clinical conundrums in aid of developing a consistent approach and future guidelines in clinical practice.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Atenção , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Criança , Comorbidade , Humanos , Testes Neuropsicológicos
7.
Biodegradation ; 32(1): 37-52, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33269416

RESUMO

The Niger Delta is one of the most damaged ecosystems in the world, mainly due to petroleum contamination by oil exploration accidents. We investigated the natural attenuation potential of Niger Delta subsurface sediment samples for anaerobic hydrocarbon degradation using benzene as a model compound under iron-reducing, sulfate-reducing, and methanogenic conditions. Benzene was slowly mineralized under methanogenic and iron-reducing conditions using nitrilotriacetic acid (NTA)-Fe(III), or poorly crystalline Fe(III) oxyhydroxides as electron acceptors, analyzed by measurement of 13CO2 produced from added 13C-labelled benzene. Highest mineralization rates were observed in microcosms amended with Fe(III) oxyhydroxides. The microbial communities of benzene-mineralizing enrichment cultures were characterized by next-generation sequencing of the genes coding for 16S rRNA and methyl coenzyme M reductase A (mcrA). Abundant phylotypes were affiliated to Betaproteobacteriales, Ignavibacteriales, Desulfuromonadales, and Methanosarcinales of the genera Methanosarcina and Methanothrix, illustrating that the enriched benzene-mineralizing communities were diverse and may contain more than a single benzene degrader. The diversity of the microbial communities was furthermore confirmed by scanning helium-ion microscopy which revealed the presence of various rod-shaped as well as filamentous microbial morphotypes.


Assuntos
Benzeno , Microbiota , Anaerobiose , Biodegradação Ambiental , Compostos Férricos , Microbiota/genética , Níger , RNA Ribossômico 16S/genética
8.
Microb Ecol ; 75(4): 941-953, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29124312

RESUMO

Benzene mineralization under nitrate-reducing conditions was successfully established in an on-site reactor continuously fed with nitrate and sulfidic, benzene-containing groundwater extracted from a contaminated aquifer. Filling material from the reactor columns was used to set up anoxic enrichment cultures in mineral medium with benzene as electron donor and sole organic carbon source and nitrate as electron acceptor. Benzene degradation characteristics and community composition under nitrate-reducing conditions were monitored and compared to those of a well-investigated benzene-mineralizing consortium enriched from the same column system under sulfate-reducing conditions. The nitrate-reducing cultures degraded benzene at a rate of 10.1 ± 1.7 µM d-1, accompanied by simultaneous reduction of nitrate to nitrite. The previously studied sulfate-reducing culture degraded benzene at similar rates. Carbon and hydrogen stable isotope enrichment factors determined for nitrate-dependent benzene degradation differed significantly from those of the sulfate-reducing culture (ΛH/C nitrate = 12 ± 3 compared to ΛH/C sulfate = 28 ± 3), indicating different benzene activation mechanisms under the two conditions. The nitrate-reducing community was mainly composed of Betaproteobacteria, Ignavibacteria, and Anaerolineae. Azoarcus and a phylotype related to clone Dok59 (Rhodocyclaceae) were the dominant genera, indicating an involvement in nitrate-dependent benzene degradation. The primary benzene degrader of the sulfate-reducing consortium, a phylotype belonging to the Peptococcaceae, was absent in the nitrate-reducing consortium.


Assuntos
Bactérias/metabolismo , Benzeno/metabolismo , Consórcios Microbianos/fisiologia , Nitratos/metabolismo , Sulfatos/metabolismo , Anaerobiose , Azoarcus/metabolismo , Bactérias/classificação , Bactérias/genética , Betaproteobacteria/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Água Subterrânea/microbiologia , Marcação por Isótopo , Consórcios Microbianos/genética , Oxirredução , Peptococcaceae/metabolismo , RNA Ribossômico 16S/metabolismo , Rhodocyclaceae/metabolismo
9.
Microb Ecol ; 75(4): 954, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29167922

RESUMO

The original version of this article unfortunately contained mistakes in Table 1. The two data sets were accidentally missing in the table. The original article has been corrected.

10.
Biodegradation ; 29(4): 409-418, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29916096

RESUMO

The biotransformation of hexachlorocyclohexane isomers (HCH) by two Dehalococcoides mccartyi strains (195 and BTF08) and an enrichment culture was investigated and compared to conversion by the obligate anaerobic strain Clostridium pasteurianum strain DSMZ 525. The D. mccartyi strains preferentially transformed γ-HCH over α-HCH and δ-HCH isomers while ß-HCH biotransformation was not significant. In case of the enrichment culture, γ-HCH was preferentially transformed over the δ-HCH, ß-HCH and α-HCH isomers. Major observed metabolites in both cases were tetrachlorocyclohexene and as end products monochlorobenzene (MCB) and benzene. Dechlorination of the γ-HCH isomer was linked to an increase in cell numbers for strain 195. γ-HCH transformation was linked to considerable carbon stable isotope fractionation with the enrichment factor εc = - 5.5 ± 0.8‰ for D. mccartyi strain 195, εc = - 3.1 ± 0.4‰ for the enrichment culture and εc = - 4.1 ± 0.6‰ for co-metabolic transformation by C. pasteurianum.


Assuntos
Chloroflexi/metabolismo , Hexaclorocicloexano/química , Hexaclorocicloexano/metabolismo , Biodegradação Ambiental , Biotransformação , Isótopos de Carbono/metabolismo , Fracionamento Químico , Halogenação , Isomerismo , Marcação por Isótopo
11.
Microb Ecol ; 71(4): 901-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846217

RESUMO

In a benzene-degrading and sulfate-reducing syntrophic consortium, a clostridium affiliated to the genus Pelotomaculum was previously described to ferment benzene while various sulfate-reducing Deltaproteobacteria and a member of the Epsilonproteobacteria were supposed to utilize acetate and hydrogen as key metabolites derived from benzene fermentation. However, the acetate utilization network within this community was not yet unveiled. In this study, we performed a pulsed (13)C2-acetate protein stable isotope probing (protein-SIP) approach continuously spiking low amounts of acetate (10 µM per day) in addition to the ongoing mineralization of unlabeled benzene. Metaproteomics revealed high abundances of Clostridiales followed by Syntrophobacterales, Desulfobacterales, Desulfuromonadales, Desulfovibrionales, Archaeoglobales, and Campylobacterales. Pulsed acetate protein-SIP results indicated that members of the Campylobacterales, the Syntrophobacterales, the Archaeoglobales, the Clostridiales, and the Desulfobacterales were linked to acetate utilization in descending abundance. The Campylobacterales revealed the fastest and highest (13)C incorporation. Previous experiments suggested that the activity of the Campylobacterales was not essential for anaerobic benzene degradation in the investigated community. However, these organisms were consistently detected in various hydrocarbon-degrading and sulfate-reducing consortia enriched from the same aquifer. Here, we demonstrate that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.


Assuntos
Acetatos/metabolismo , Benzeno/metabolismo , Epsilonproteobacteria/metabolismo , Proteômica/métodos , Sulfatos/metabolismo , Anaerobiose , Proteínas de Bactérias/análise , Biodegradação Ambiental , Isótopos de Carbono/análise , Clostridiales/crescimento & desenvolvimento , Clostridiales/metabolismo , Deltaproteobacteria/metabolismo , Água Subterrânea/microbiologia , Hidrocarbonetos/metabolismo , Hidrogênio/metabolismo , Consórcios Microbianos , Filogenia , Bactérias Redutoras de Enxofre/metabolismo
12.
Environ Sci Technol ; 50(6): 3091-100, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26855125

RESUMO

Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.


Assuntos
Poluentes Ambientais/metabolismo , Hidrogênio/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Aerobiose , Anaerobiose , Biodegradação Ambiental , Isótopos de Carbono/análise , Fracionamento Químico/métodos , Deutério/análise , Poluentes Ambientais/química , Redes e Vias Metabólicas , Naftalenos/metabolismo , Isótopos de Nitrogênio/análise , Hidrocarbonetos Policíclicos Aromáticos/química
13.
Child Adolesc Ment Health ; 21(4): 192-200, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32680336

RESUMO

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) can be treated with stimulant medication such as methylphenidate. Although effective, methylphenidate can cause serious side-effects, including suppressed appetite, growth retardation and sleep problems. A drug holiday is a deliberate interruption of pharmacotherapy for a defined period of time and for a specific clinical purpose, for example for appeasing side-effects. While some international guidelines recommend introducing drug holidays in ADHD treatment, this is not practised routinely. Our aim was to examine the views and experiences of planned drug holidays from methylphenidate with adults who have responsibility for treatment decisions in children and adolescents with ADHD. METHOD: In-depth interviews were carried out. Child and Adolescent Mental Health Services practitioners (n = 8), General practitioners (n = 8), teachers (n = 5) and mothers of children with ADHD (n = 4) were interviewed in a UK setting. Interview transcripts were analysed using grounded theory. RESULTS: Methylphenidate eases the experience of the child amid problems at home and at school and once started is mostly continued long term. Some families do practise short-term drug holidays at weekends and longer term ones during school holidays. The decision to introduce drug holidays is influenced by the child's academic progress, the parents' ability to cope with the child, as well as medication beliefs. Trialling a drug holiday is thought to allow older children to self-assess their ability to manage without medication when they show signs of wanting to discontinue treatment prematurely. CONCLUSIONS: Planned drug holidays could address premature treatment cessation by enabling adolescents to assess repercussions under medical supervision.

14.
Environ Microbiol ; 16(1): 130-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24028539

RESUMO

The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, Λrp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. Λrp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms.


Assuntos
Bactérias/metabolismo , Butanos/metabolismo , Propano/metabolismo , Água do Mar/microbiologia , Sulfatos/metabolismo , Anaerobiose , Biodegradação Ambiental , Isótopos de Carbono/metabolismo , Deutério/metabolismo , Oxirredução
15.
Microb Ecol ; 68(2): 222-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24623528

RESUMO

Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.


Assuntos
Deltaproteobacteria/classificação , Água Subterrânea/microbiologia , Consórcios Microbianos/genética , Filogenia , Tolueno/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Deltaproteobacteria/genética , Ecossistema , Genes Bacterianos , Alemanha , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Microbiologia da Água , Poluentes Químicos da Água/metabolismo
16.
Environ Sci Technol ; 48(10): 5788-97, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24738781

RESUMO

Compound-specific isotope analysis (CSIA) is a state-of-the-art analytical tool that can be used to establish and quantify biodegradation of pollutants such as BTEX compounds at contaminated field sites. Using isotopes of two elements and characteristic Lambda values (Λ) in dual-isotope-plots can provide insight into reaction mechanisms because kinetic isotope effects (KIEs) of both elements are reflected. However, the concept's validity in the case of reactions that show strong isotope fractionation needs to be examined. The anaerobic ethylbenzene degradation pathway of Aromatoleum aromaticum is initiated by the ethylbenzene dehydrogenase-catalyzed monohydroxylation of the benzylic carbon atom. Measurements of stable isotope ratios revealed highly pronounced hydrogen fractionation, which could not be adequately described by the classical Rayleigh approach. This study demonstrates the nonlinear behavior of hydrogen isotope ratios caused by anaerobic ethylbenzene hydroxylation both mathematically and experimentally, develops alternative dual plots to enable the comparison of reactions by considering the reacting atoms, and illustrates the importance of the stereochemical aspects of substrate and product for the quantification of hydrogen fractionation in an enzymatic reaction. With regard to field application, proposals for an improved CSIA evaluation procedure with respect to pronounced hydrogen enrichment are given.


Assuntos
Derivados de Benzeno/metabolismo , Betaproteobacteria/metabolismo , Hidrogênio/química , Marcação por Isótopo/métodos , Biodegradação Ambiental , Carbono , Isótopos de Carbono , Fracionamento Químico , Isótopos/análise , Cinética
17.
Environ Sci Technol ; 48(16): 9122-32, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24971724

RESUMO

This study applied one- and two-dimensional compound-specific isotope analysis (CSIA) for the elements carbon and hydrogen to assess different means of microbial ethylbenzene activation. Cultures incubated under nitrate-reducing conditions showed significant carbon and highly pronounced hydrogen isotope fractionation of comparable magnitudes, leading to nearly identical slopes in dual-isotope plots. The results imply that Georgfuchsia toluolica G5G6 and an enrichment culture dominated by an Azoarcus species activate ethylbenzene by anaerobic hydroxylation catalyzed by ethylbenzene dehydrogenase, similar to Aromatoleum aromaticum EbN1. The isotope enrichment pattern in dual plots from two strictly anaerobic enrichment cultures differed considerably from those for benzylic hydroxylation, indicating an alternative anaerobic activation step, most likely fumarate addition. Large hydrogen fractionation was quantified using a recently developed Rayleigh-based approach considering hydrogen atoms at reactive sites. Data from nine investigated microbial cultures clearly suggest that two-dimensional CSIA in combination with the magnitude of hydrogen isotope fractionation is a valuable tool to distinguish ethylbenzene degradation and may be of practical use for monitoring natural or technological remediation processes at field sites.


Assuntos
Derivados de Benzeno/metabolismo , Isótopos de Carbono/análise , Deutério/análise , Bactérias/metabolismo , Biodegradação Ambiental , Nitratos/metabolismo
18.
Environ Sci Technol ; 48(16): 9094-102, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25003498

RESUMO

The microbial oxidation of sulfide is a key reaction of the microbial sulfur cycle, recycling sulfur in its most reduced valence state back to more oxidized forms usable as electron acceptors. Under anoxic conditions, nitrate is a preferential electron acceptor for this process. Two enzymatic pathways have been proposed for sulfide oxidation under nitrate reducing conditions, the sulfide:quinone oxidoreductase (SQR) pathway and the Sox (sulfur oxidation) system. In experiments with the model strains Thiobacillus denitrificans and Sulfurimonas denitrificans, both pathways resulted in a similar small sulfur and oxygen isotope fractionation of -2.4 to -3.6‰ for (34)S and -2.4 to -3.4‰ for (18)O. A similar pattern was detected during the oxidation of sulfide in a column percolated with sulfidic, nitrate amended groundwater. In experiments with (18)O-labeled water, a strong oxygen isotope fractionation was observed for T. denitrificans and S. denitrificans, indicating a preferential incorporation of (18)O-depleted oxygen released as water by nitrate reduction to nitrogen. The study indicates that nitrate-dependent sulfide oxidation might be monitored in the environment by analysis of (18)O-depleted sulfate.


Assuntos
Epsilonproteobacteria/metabolismo , Isótopos de Oxigênio/metabolismo , Sulfetos/metabolismo , Isótopos de Enxofre/metabolismo , Thiobacillus/metabolismo , Nitratos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Quinona Redutases/metabolismo , Sulfatos/metabolismo
19.
Isotopes Environ Health Stud ; 60(2): 103-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38344763

RESUMO

The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.


Assuntos
Água Subterrânea , Microbiota , Anaerobiose , Metano/análise , Dióxido de Carbono , Compostos Férricos , Isótopos de Carbono/análise , Hidrogênio
20.
Environ Sci Ecotechnol ; 20: 100371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38283867

RESUMO

At the sediment-water interfaces, filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors. These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements. Cable bacteria were first reported in 2012. In the past years, cable bacteria have been found to be widely distributed across the globe. Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated. In this review, the biogeochemical characteristics, conduction mechanisms, and geographical distribution of cable bacteria, as well as their ecological effects, are systematically reviewed and discussed. Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA