Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897858

RESUMO

Difenoconazole is a chemical entity containing two chiral centers and having four stereoisomers: (2R,4R)-, (2R,4S)-, (2S,4R)- and (2S,4S)-difenoconazole, the marketed product containing a mixture of these isomers. Residues of difenoconazole have been identified in many agricultural products and drinking water. A computational approach has been used to evaluate the toxicological effects of the difenoconazole stereoisomers on humans. It integrates predictions of absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles, prediction of metabolism sites, and assessment of the interactions of the difenoconazole stereoisomers with human cytochromes, nuclear receptors and plasma proteins by molecular docking. Several toxicological effects have been identified for all the difenoconazole stereoisomers: high plasma protein binding, inhibition of cytochromes, possible hepatotoxicity, neurotoxicity, mutagenicity, skin sensitization potential, moderate potential to produce endocrine disrupting effects. There were small differences in the predicted probabilities of producing various biological effects between the distinct stereoisomers of difenoconazole. Furthermore, there were significant differences between the interacting energies of the difenoconazole stereoisomers with plasma proteins and human cytochromes, the spectra of the hydrogen bonds and aromatic donor-acceptor interactions being quite distinct. Some distinguishing results have been obtained for the (2S,4S)-difenoconazole: it registered the highest value for clearance, exposed reasonable probabilities to produce cardiotoxicity and carcinogenicity and negatively affected numerous nuclear receptors.


Assuntos
Quimioinformática , Citocromos , Dioxolanos , Humanos , Simulação de Acoplamento Molecular , Estereoisomerismo , Triazóis
2.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235091

RESUMO

Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.


Assuntos
Água Potável , Fungicidas Industriais , Poluentes do Solo , Ciclopentanos , Citocromos , Fungicidas Industriais/química , Humanos , Oxirredutases , Monoéster Fosfórico Hidrolases , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Triazóis , Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA