Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 755(Pt 1): 142451, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017764

RESUMO

Stormwater infiltration systems (SIS) have been set up to collect and infiltrate urban stormwater runoff in order to reduce flooding and to artificially recharge aquifers. Such practices produce environmental changes in shallow groundwater ecosystems like an increase in organic matter concentrations that could drive changes in structure and functions of groundwater microbial communities. Previous works suggested that SIS influence groundwater physico-chemistry during either rainy and dry period but no study has examined the impact of SIS on groundwater microorganisms during both periods. This study aimed to fill this gap by assessing SIS impacts on groundwater quality parameters in three SIS with vadose zone thickness < 3 m during two contrasting meteorological conditions (rainy/dry periods). Physicochemical (dissolved organic carbon and nutrient concentrations) and microbial variables (biomass, dehydrogenase and hydrolytic activities, and bacterial community structure) were assessed on SIS-impacted and non-SIS-impacted zones of the aquifers for the three SIS. Using clay beads incubated in the aquifer to collect microbial biofilm, we show that SIS increased microbial activities, bacterial richness and diversity in groundwater biofilms during the rainy period but not during the dry period. In contrast, the significant differences in dissolved organic carbon and nutrient concentrations, biofilm biomass and bacterial community structures (Bray-Curtis distances, relative abundances of main bacterial orders) measured between SIS-impacted and non-SIS-impacted zones of the aquifer were comparable during the two periods. These results suggest that structural indicators of biofilm like biomass were probably controlled by long-term effects of SIS on concentrations of dissolved organic matter and nutrients whereas biofilm activities and bacterial richness were temporally stimulated by stormwater runoff infiltrations during the rainy period. This decoupling between the structural and functional responses of groundwater biofilms to stormwater infiltration practices suggests that biofilms functions were highly reactive to fluxes associated with aquifer recharge events.


Assuntos
Ecossistema , Água Subterrânea , Bactérias , Biofilmes , Chuva
2.
Sci Total Environ ; 795: 148842, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328914

RESUMO

Bioturbation activity of tubificid worms has been recognized as a key process influencing organic matter processing and nutrient cycling in benthic aquatic ecosystems. This activity is expected to modify benthic microbial communities by affecting the physical and chemical environment in sediments. Nevertheless, quantifications of bacterial community changes associated with bioturbation in freshwater ecosystems are still lacking. The present study aimed at evaluating the impact of tubificid worms on bacterial community structure using NGS approach (16S metabarcoding) and long (6 months) laboratory experiments on four heterotrophic wetland sediments. Worm bioturbation activity significantly stimulated biogeochemical processes at the water-sediment interface but only had a marginally significant effect on bacterial community structures. Yet, bacterial diversity was consistently reduced in presence of worms. Such decrease could be associated with the stimulation of organic matter mineralization by worms, leading to a reduction of the diversity of trophic niches available for bacterial species. The slight changes in bacterial community structures induced by bioturbation did not appear to control biogeochemical processes. Thus, the stimulation of biogeochemical processes by worm bioturbation was more associated with a stimulation of the initial bacterial community than with a drastic change in bacterial communities induced by worms.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Fenômenos Fisiológicos Bacterianos , Ecossistema , Poluentes Químicos da Água/análise , Áreas Alagadas
3.
Environ Sci Pollut Res Int ; 27(3): 3295-3308, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838704

RESUMO

Recharge of aquifers by urban stormwater may trigger significant ecological changes that can be detrimental to the biodiversity and functioning of groundwater ecosystems. Here, the effects of aquifer recharge (AR) on three levels of parameters were investigated: dissolved organic carbon (DOC) quantity and quality, global biofilm characteristics, and diversity changes of bacterial communities. As DOC enrichment by AR can be mitigated by vadose zone (VZ) thickness, three AR sites with thin VZ (< 3 m) and three sites with thick VZ (> 10 m) were selected. For each AR site, clay beads were incubated over a 10-day-long rainy period through wells in recharged and non-recharged groundwaters. Total proteins, dehydrogenase, and hydrolytic activities were monitored from clay beads to assess biofilm development. Bacterial richness on beads was estimated by 16S rRNA-based metabarcoding. AR was found to significantly increase DOC and biodegradable DOC (BDOC) concentrations, biofilm development, and bacterial richness especially in sites with thin VZ. VZ thickness was inversely related to microbial growth indicators and bacterial richness in groundwater, through a control of DOC availability. The proportion of Bacteroidetes 16S rRNA gene reads was higher in recharged groundwater than in non-recharged groundwater, suggesting that this phylum could be used as an indicator of DOC enrichment associated with AR. Quantitative PCR assays for Bacteroides DNA confirmed these trends and showed an enrichment of this bacterial group in DOC-rich aquifer waters. The positive linear relationships between BDOC concentrations and biofilm variables highlighted a strong C-limitation of groundwater impacting bacterial species sorting and activity.


Assuntos
Bactérias/química , Ecossistema , Água Subterrânea , RNA Ribossômico 16S/química , Biofilmes
4.
Sci Total Environ ; 637-638: 1496-1507, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801243

RESUMO

Stormwater infiltration systems (SIS) have been built in urban areas to reduce the environmental impacts of stormwater runoff. Infiltration basins allow the transfer of stormwater runoff to aquifers but their abilities to retain contaminants depend on vadose zone properties. This study assessed the influence of vadose zone thickness (VZT) on the transfer of inorganic nutrients (PO43-, NO3-, NH4+), dissolved organic carbon (total -DOC- and biodegradable -BDOC-) and bacteria. A field experiment was conducted on three SIS with a thin vadose zone (<3 m) and three SIS with a thick vadose zone (>10 m). Water samples were collected at three times during a rainy period of 10 days in each infiltration basin (stormwater runoff), in the aquifer impacted by infiltration (impacted groundwater) and in the same aquifer but upstream of the infiltration area (non-impacted groundwater). Inorganic nutrients, organic matter, and dissolved oxygen (DO) were measured on all water samples. Bacterial community structures were investigated on water samples through a next-generation sequencing (NGS) scheme of 16S rRNA gene amplicons (V5-V6). The concentrations of DO and phosphate measured in SIS-impacted groundwaters were significantly influenced by VZT due to distinct biogeochemical processes occurring in the vadose zone. DOC and BDOC were efficiently retained in the vadose zone, regardless of its thickness. Bacterial transfers to the aquifer were overall low, but data obtained on day 10 indicated a significant bacterial transfer in SIS with a thin vadose zone. Water transit time and water saturation of the vadose zone were found important parameters for bacterial transfers. Most bacterial taxa (>60%) from impacted groundwaters were not detected in stormwater runoff and in non-impacted groundwaters, indicating that groundwater bacterial communities were significantly modified by processes associated with infiltration (remobilization of bacteria from vadose zone and/or species sorting).


Assuntos
Bactérias/crescimento & desenvolvimento , Água Subterrânea/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Subterrânea/microbiologia , Nitrogênio/análise
5.
PeerJ ; 5: e3823, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29038748

RESUMO

BACKGROUND: Parkinson's disease (PD) is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain-some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS) invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson's disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. METHODS: Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. RESULTS: The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484) and N. farcinica 10152. DISCUSSION: We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to characterize the induced behavioral disorders and bacterial dissemination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA