Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 30(3): 840-850, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28222263

RESUMO

4-Hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) are biologically important reactive aldehydes formed during oxidative stress in phospholipid bilayers. They are highly reactive species due to presence of several reaction centers and can react with amino acids in peptides and proteins, as well as phosphoethanolamine (PE) lipids, thus modifying their biological activity. The aim of this work is to study in a molecular detail the reactivity of HNE and ONE toward PE lipids in a simplified system containing only lipids and reactive aldehydes in dichloromethane as an inert solvent. We use a combination of quantum chemical calculations, 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments and show that for both reactive aldehydes two types of chemical reactions are possible: formation of Michael adducts and Schiff bases. In the case of HNE, an initially formed Michael adduct can also undergo an additional cyclization step to a hemiacetal derivative, whereas no cyclization occurs in the case of ONE and a Michael adduct is identified. A Schiff base product initially formed when HNE is added to PE lipid can also further cyclize to a pyrrole derivative in contrast to ONE, where only a Schiff base product is isolated. The suggested reaction mechanism by quantum-chemical calculations is in a qualitative agreement with experimental yields of isolated products and is also additionally investigated by 1H NMR measurements, FT-IR spectroscopy, and mass spectrometry experiments.


Assuntos
Aldeídos/química , Fosfatidiletanolaminas/química , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Phys Chem A ; 116(32): 8397-406, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22809455

RESUMO

The electronic charge redistribution and the infrared intensities of the two types of intramolecular hydrogen bonds, O-H···O and O-H···π, of o-hydroxy- and o-ethynylphenol, respectively, together with a set of related intermolecular hydrogen bond complexes are described in terms of atomic charges and charge fluxes derived from atomic polar tensors calculated at the B3LYP/cc-pVTZ level of theory. The polarizable continuum model shows that both the atomic charges and charge fluxes are strongly dependent on solvent. It is shown that their values for the OH bond in an intramolecular hydrogen bond are not much different from those for the "free" OH bond, but the changes are toward the values found for an intermolecular hydrogen bond. The intermolecular hydrogen bond is characterized not only by the decreased atomic charge but also by the enlarged charge flux term of the same sign producing thus an enormous increase in IR intensity. The overall behavior of the charges and fluxes of the hydrogen atom in OH and ≡CH bonds agree well with the observed spectroscopic characteristics of inter- and intramolecular hydrogen bonding. The main reason for the differences between the two types of the hydrogen bond lies in the molecular structure because favorable linear proton donor-acceptor arrangement is not possible to achieve within a small molecule. The calculated intensities (in vacuo and in polarizable continuum) are only in qualitative agreement with the measured data.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 182-187, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27643468

RESUMO

Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm-1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p).

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1912-23, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25467686

RESUMO

Hydrogen bonding properties of 2,6- and 3,5-diethynylpyridine were analyzed by exploring of their interactions with trimethylphosphate, as hydrogen bond acceptor, or phenol, as hydrogen bond donor, in tetrachloroethene C2Cl4. The employment of IR spectroscopy enabled unravelling of their interaction pattern as well as the determination of their association constants (Kc) and standard reaction enthalpies (ΔrH(⦵)). The association of diethynylpyridines with trimethylphosphate in stoichiometry 1:1 is established through CH⋯O hydrogen bond, accompanied by the secondary interaction between CC moiety and CH3 group of trimethylphosphate. In the complexes with phenol, along with the expected OH⋯N interaction, CC⋯HO interaction is revealed. In contrast to 2,6-diethynylpyridine where the spatial arrangement of hydrogen bond accepting groups enables the simultaneous involvement of phenol OH group in both OH⋯N and OH⋯CC hydrogen bond, in the complex between phenol and 3,5-diethynylpyridine this is not possible. It is postulated that cooperativity effects, arisen from the certain type of resonance-assisted hydrogen bonds, contribute the stability gain of the latter. Associations of diethynylpyridines with trimethylphosphate are characterized as weak (Kc≈0.8-0.9mol(-1)dm(3); -ΔrH(⦵)≈5-8kJmol(-1)), while their complexes with phenol as medium strong (Kc≈5mol(-1)dm(3); -ΔrH(⦵)≈15-35kJmol(-1)). Experimental findings on the studied complexes are supported with the calculations conducted at B3LYP/6-311++G(d,p) level of theory in the gas phase. Two conformers of diethynylpyridine⋯trimethylphosphate dimers are formed via CH⋯O interaction, whereas dimers between phenol and diethynylpyridines are established through OH⋯N interaction.

5.
Chem Phys Lipids ; 186: 17-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447291

RESUMO

Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition temperature in dispersions reflect the interactions of lipid headgroups with the ions in SW. Force spectroscopy was used to quantify the nanomechanical hardness of a DMPC supported lipid bilayer (SLB). Considering the electrostatic and ion binding equilibrium contributions while systematically probing the SLB in various salt solutions, we showed that ionic strength had a decisive influence on its nanomechanics. The mechanical hardness of DMPC SLBs in the liquid crystalline phase linearly increases with the increasing fraction of all ion-bound lipids in a series of monovalent salt solutions. It also linearly increases in the gel phase but almost three times faster (the corresponding slopes are 4.9 nN/100 mM and 13.32 nN/100 mM, respectively). We also showed that in the presence of divalent ions (Ca(2+) and Mg(2+)) the bilayer mechanical hardness was unproportionally increased, and that was accompanied with the decrease of Na(+) ion and increase of Cl(-) ion bound lipids. The underlying process is a cooperative and competitive ion binding in both the gel and the liquid crystalline phase. Bilayer hardness thus turned out to be very sensitive to ionic strength as well as to ionic composition of the surrounding medium. In particular, the indicated correlation helped us to emphasize the colligative properties of SW as a naturally occurring complex ion mixture.


Assuntos
Cálcio/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Magnésio/química , Cátions Bivalentes/química , Elasticidade , Fluidez de Membrana , Microscopia de Força Atômica , Concentração Osmolar , Transição de Fase , Água do Mar/química , Espectrofotometria Infravermelho
6.
J Phys Chem B ; 119(16): 5208-19, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25831116

RESUMO

The interactions between hydrophobic or semihydrophobic gold and silver nanoparticles (NPs) and a dimyristoylphosphatidylcholine (DMPC) bilayer as a model cell membrane in two ionic solutions result in the structural reorganization within the bilayer manifested as locally increased nanomechanical compaction in the vicinity of NP clusters as well as changed overall thermotropic properties. The effects of NP surface charge and hydrophobicity were examined using AFM imaging, force spectroscopy and IR spectroscopy. The NP clustering occurred during hydration process of dry films containing both the DMPC molecules and the NPs by the mechanism in which the number of bilayer deformations was reduced by NP clustering. The force spectroscopy showed increased bilayer density around (semi)hydrophobic NP clusters and thus locally increased lateral compaction of the bilayer. The strengthening effect was observed for both the silver and the gold NPs in a high ionic strength solution such as seawater, while it was absent under physiological conditions. The local lipid rearrangement induces the long-range lipid reorganization resulting in the bilayer phase transition shifting toward lower or higher temperatures depending on the solution ionic strength (at the most by -1.0 °C in phosphate buffered saline and at the most by +0.5 °C in seawater).


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Estrutura Molecular , Prata/química , Propriedades de Superfície
7.
Artigo em Inglês | MEDLINE | ID: mdl-24845872

RESUMO

Weak hydrogen bonds between phenol and ethynylbenzene in tetrachloroethene were explored by using FTIR spectroscopy. Association constants (Kc) were determined by high dilution method at two temperatures, 20°C and 26°C, and they are, respectively, 0.54±0.09 mol(-1) dm3 and 0.36±0.08 mol(-1) dm3. The position of ethynylbenzene stretching band, when in hydrogen bonding complex with phenol (CC⋯), is proposed to be governed by the interplay of OH⋯π (CC moiety or phenyl ring of ethynylbenzene) and π⋯π (phenyl ring of phenol⋯CC moiety or phenyl ring of ethynylbenzene) interactions. This conclusion is supported by the findings on the complex between ethanol and ethynylbenzene; in the latter, CC⋯ stretching band is shifted to the higher wavenumbers, as expected when ethynylbenzene interacts with hydrogen bond donor. Geometries and energies of the presumed complexes, as well as their vibrational spectra, are predicted by using ab initio calculations. The spectroscopic and thermodynamic data obtained here offer the missing pieces in the present picture of migration of H-atom of phenol OH group between competing hydrogen bond accepting centers on ethynylbenzene.


Assuntos
Acetileno/análogos & derivados , Elétrons , Fenol/química , Acetileno/química , Etanol/química , Ligação de Hidrogênio , Cinética , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 132: 215-24, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24866088

RESUMO

Weak hydrogen bonds formed by 2- and 3-ethynylpyridine and ethynylbenzene with trimethylphosphate and phenol were characterized by IR spectroscopy and DFT calculations (B3LYP/6-311++G(d, p)). The structure and stability of ethynylpyridines and ethynylbenzene in the gas phase and in the complexes with trimethylphosphate and phenol are discussed in terms of geometry and electronic charge redistribution. Anharmonic effects are taken into account when calculating vibrational wavenumbers of these systems what lead to partial improvement of agreement with experiment. The changes in the electronic charge distribution are behind the frequency shifts of the CC stretching in opposite direction depending on the role the ethyne molecule has in a hydrogen bonded complex (Δν̃=+9 cm(-1) in trimethylphosphate complexes, Δν̃=-3 cm(-1) in phenol complexes). The association constants were determined by keeping the concentrations of proton donors approximately constant and low enough to avoid self-association and the proton acceptors were present in excess. The values obtained for the association constants and enthalpy changes in C2Cl4 (for trimethylphosphate complexes K≈0.5-1.0 mol(-1)dm(3) and -ΔrH≈6-8 kJ mol(-1), for phenol complexes K≈20-40 mol(-1) dm3-ΔrH≈17-22 kJ mol(-1)) are in good agreement with literature data.


Assuntos
Acetileno/análogos & derivados , Piridinas/química , Vibração , Acetileno/química , Dimerização , Ligação de Hidrogênio , Cinética , Espectrofotometria Infravermelho , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA