Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 14(8): e1007560, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102700

RESUMO

In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Axônios/fisiologia , Adesão Celular , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Técnicas de Genotipagem , Modelos Teóricos , Análise de Sequência de RNA
2.
Nat Commun ; 15(1): 5270, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902233

RESUMO

Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.


Assuntos
Diferenciação Celular , Proteínas de Drosophila , Células-Tronco Neurais , Neurônios , Estabilidade de RNA , RNA Mensageiro , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/citologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Diferenciação Celular/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Códon/genética , Drosophila melanogaster/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Drosophila/genética , Drosophila/metabolismo , Encéfalo/metabolismo , Encéfalo/citologia , Fatores de Transcrição
3.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36695023

RESUMO

Bacteriophage integrase-directed insertion of transgenic constructs into specific genomic loci has been widely used by Drosophila community. The attP40 landing site located on the second chromosome gained popularity because of its high inducible transgene expression levels. Here, unexpectedly, we found that homozygous attP40 chromosome disrupts normal glomerular organization of Or47b olfactory receptor neuron (ORN) class in Drosophila. This effect is not likely to be caused by the loss of function of Msp300, where the attP40 docking site is inserted. Moreover, the attP40 background seems to genetically interact with the second chromosome Or47b-GAL4 driver, which results in a similar glomerular defect. Whether the ORN phenotype is caused by the neighbouring genes around Msp300 locus in the presence of attP40-based insertions or a second unknown mutation in the attP40 background remains elusive. Our findings tell a cautionary tale about using this popular transgenic landing site, highlighting the importance of rigorous controls to rule out the attP40 landing site-associated background effects.


Assuntos
Proteínas de Drosophila , Neurônios Receptores Olfatórios , Animais , Drosophila/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteínas de Drosophila/metabolismo , Animais Geneticamente Modificados , Mutação
4.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546801

RESUMO

Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent expression in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for expression control and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA and protein expression.

5.
Sci Adv ; 6(21): eaba6913, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494751

RESUMO

To increase fitness, animals use both internal and external states to coordinate reproductive behaviors. The molecular mechanisms underlying this coordination remain unknown. Here, we focused on pheromone-sensing Drosophila Or47b neurons, which exhibit age- and social experience-dependent increase in pheromone responses and courtship advantage in males. FruitlessM (FruM), a master regulator of male courtship behaviors, drives the effects of social experience and age on Or47b neuron responses and function. We show that simultaneous exposure to social experience and age-specific juvenile hormone (JH) induces chromatin-based reprogramming of fruM expression in Or47b neurons. Group housing and JH signaling increase fruM expression in Or47b neurons and active chromatin marks at fruM promoter. Conversely, social isolation or loss of JH signaling decreases fruM expression and increases repressive marks around fruM promoter. Our results suggest that fruM promoter integrates coincident hormone and pheromone signals driving chromatin-based changes in expression and ultimately neuronal and behavioral plasticity.


Assuntos
Corte , Proteínas de Drosophila , Animais , Cromatina/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Hormônios , Masculino , Proteínas do Tecido Nervoso/genética , Percepção , Feromônios , Comportamento Sexual Animal/fisiologia , Fatores de Transcrição/metabolismo
6.
Curr Biol ; 29(22): 3887-3898.e4, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679932

RESUMO

Critical to evolutionary fitness, animals regulate social behaviors by integrating signals from both their external environments and internal states. Here, we find that population density modulates the courtship behavior of male Drosophila melanogaster in an age-dependent manner. In a competitive mating assay, males reared in a social environment have a marked advantage in courting females when pitted against males reared in isolation. Group housing promotes courtship in mature (7-day) but not immature (2-day) males; this behavioral plasticity requires the Or47b pheromone receptor. Using single-sensillum recordings, we find that group housing increases the response of Or47b olfactory receptor neurons (ORNs) only in mature males. The effect of group housing on olfactory response and behavior can be mimicked by chronically exposing single-housed males to an Or47b ligand. At the molecular level, group housing elevates Ca2+ levels in Or47b ORNs, likely leading to CaMKI-mediated activation of the histone-acetyl transferase CBP. This signaling event in turn enhances the efficacy of juvenile hormone, an age-related regulator of reproductive maturation in flies. Furthermore, the male-specific Fruitless isoform (FruM) is required for the sensory plasticity, suggesting that FruM functions as a downstream genomic coincidence detector in Or47b ORNs-integrating reproductive maturity, signaled by juvenile hormone, and population density, signaled by CBP. In all, we identify a neural substrate and activity-dependent mechanism by which social context can directly influence pheromone sensitivity, thereby modulating social behavior according to animals' life-history stage.


Assuntos
Feromônios/metabolismo , Comportamento Sexual Animal/fisiologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Copulação/fisiologia , Corte , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Histona Acetiltransferases/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios Receptores Olfatórios/fisiologia , Feromônios/fisiologia , Densidade Demográfica , Isoformas de Proteínas , Olfato/fisiologia , Comportamento Social , Meio Social , Fatores de Transcrição/genética
7.
J Vis Exp ; (136)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29985372

RESUMO

The olfactory system of Drosophila is a widely used system in developmental neurobiology, systems neuroscience, as well as neurophysiology, behavior, and behavioral evolution. Drosophila olfactory tissues house the olfactory receptor neurons (ORNs) that detect volatile chemical cues in addition to hydro- and thermo-sensory neurons. In this protocol, we describe the dissection of developing peripheral olfactory tissue of the adult Drosophila species. We first describe how to stage and age Drosophila larvae, followed by the dissection of the antennal disc from early pupal stages, followed by the dissection of the antennae from mid-pupal stages and adults. We also show methods where preparations can be utilized in molecular techniques, such as the RNA extraction for qRT-PCR, RNAseq, or immunohistochemistry. These methods can also be applied to other Drosophila species after species-specific pupal development times are determined, and respective stages are calculated for appropriate aging.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila/imunologia , Imuno-Histoquímica/métodos , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais
8.
Sci Rep ; 7: 40873, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102318

RESUMO

Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.


Assuntos
Antenas de Artrópodes/metabolismo , Drosophila/metabolismo , Receptores Odorantes/metabolismo , Animais , Análise por Conglomerados , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutagênese , Neurônios Receptores Olfatórios/metabolismo , Análise de Componente Principal , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
9.
G3 (Bethesda) ; 5(12): 2809-16, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497147

RESUMO

The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.


Assuntos
Sistemas CRISPR-Cas/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Bulbo Olfatório/embriologia , Bulbo Olfatório/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Drosophila/metabolismo , Expressão Gênica , Marcação de Genes , Recombinação Homóloga , Transporte Proteico , Edição de RNA , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA