Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.

2.
J Exp Bot ; 65(18): 5217-29, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24994761

RESUMO

Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter-reporter gene analyses and quantitative real-time reverse transcription-PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Carbono/metabolismo , Glucosiltransferases/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Fotossíntese/fisiologia
3.
Plant Physiol ; 140(1): 59-66, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16339799

RESUMO

Mitochondrial serine hydroxymethyltransferase (SHMT), combined with glycine decarboxylase, catalyzes an essential sequence of the photorespiratory C2 cycle, namely, the conversion of two molecules of glycine into one molecule each of CO2, NH4+, and serine. The Arabidopsis (Arabidopsis thaliana) mutant shm (now designated shm1-1) is defective in mitochondrial SHMT activity and displays a lethal photorespiratory phenotype when grown at ambient CO2, but is virtually unaffected at elevated CO2. The Arabidopsis genome harbors seven putative SHM genes, two of which (SHM1 and SHM2) feature predicted mitochondrial targeting signals. We have mapped shm1-1 to the position of the SHM1 gene (At4g37930). The mutation is due to a G --> A transition at the 5' splice site of intron 6 of SHM1, causing aberrant splicing and a premature termination of translation. A T-DNA insertion allele of SHM1, shm1-2, and the F1 progeny of a genetic cross between shm1-1 and shm1-2 displayed the same conditional lethal phenotype as shm1-1. Expression of wild-type SHM1 under the control of either the cauliflower mosaic virus 35S or the SHM1 promoter in shm1-1 abrogated the photorespiratory phenotype of the shm mutant, whereas overexpression of SHM2 or expression of SHM1 under the control of the SHM2 promoter did not rescue the mutant phenotype. Promoter-beta-glucuronidase analyses revealed that SHM1 is predominantly expressed in leaves, whereas SHM2 is mainly transcribed in the shoot apical meristem and roots. Our findings establish SHM1 as the defective gene in the Arabidopsis shm1-1 mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Dióxido de Carbono/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Clonagem Molecular , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Meristema/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/enzimologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/enzimologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/enzimologia , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Splicing de RNA/fisiologia
4.
Plant Mol Biol ; 55(1): 17-32, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15604662

RESUMO

When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degrees C. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria , 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.


Assuntos
Carbono/metabolismo , Etiquetas de Sequências Expressas , Lipídeo A/biossíntese , Plastídeos/metabolismo , Rodófitas/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , DNA Complementar/química , DNA Complementar/genética , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Biblioteca Gênica , Hexoquinase/genética , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Consumo de Oxigênio , Proteínas de Transporte de Fosfato/genética , Fotossíntese/genética , Filogenia , Rodófitas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA