Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252158

RESUMO

Improved recycling technologies can offer sustainable end-of-life options for plastic waste. While polyolefins can be converted into small hydrocarbons over acid catalysts at high temperatures, we demonstrate an alternative mechano-catalytic strategy at ambient conditions. The mechanism is fundamentally different from classical acidity-driven high-temperature approaches, exploiting mechanochemically generated radical intermediates. Surface activation of zirconia grinding spheres creates redox active surface sites directly at the point of mechanical energy input. This allows control over mechano-radical reactivity, while powder catalysts are not active. Optimized milling parameters enable the formation of 45% C1-10 hydrocarbons from polypropylene within 1 h at ambient temperature. While mechanochemical bond scission is undesired in plastic production, we show that it can also be exploited for chemical recycling.

2.
Angew Chem Int Ed Engl ; 62(3): e202216163, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36440579

RESUMO

Achieving efficient chemical depolymerization of waste polyolefins to monomers remains an unsolved challenge, while it could be an effective means to avoid further waste accumulation in the environment and generate economic benefits. In a recent publication by Conk et al., polyethylene (PE) is converted to propylene, the second most used monomer in the polymer industry. The conversion is achieved via a tandem catalysis approach in which partially unsaturated PE chains react with ethylene to generate propylene with yields as high as 87 %. The study is a first proof of concept showcasing a selective chemical depolymerization of PE to a monomer. Future research is expected to focus on the catalyst optimization, process design, and compatibility with contaminated and multi-polymer waste streams.

3.
Angew Chem Int Ed Engl ; 60(29): 16101-16108, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33974734

RESUMO

Polypropylene (PP) makes up a large share of our plastic waste. We investigated the conversion of PP over the industrial Fluid Catalytic Cracking catalyst (FCC-cat) used to produce gasoline from crude oil fractions. We studied transport limitations arising from the larger size of polymers compared to the crude oil-based feedstock by testing the components of this catalyst separately. Infrared spectroscopy and confocal fluorescence microscopy revealed the role of the FCC matrix in aromatization, and the zeolite Y domains in coking. An equilibrium catalyst (ECAT), discarded during FCC operation as waste, produced the same aromatics content as a fresh FCC-cat, while coking decreased significantly, likely due to the reduced accessibility and activity of the zeolite domains and an enhanced cracking activity of the matrix due to metal deposits present in ECAT. This mechanistic understanding provides handles for further improving the catalyst composition towards higher aromatics selectivity.

4.
Angew Chem Int Ed Engl ; 59(36): 15402-15423, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160372

RESUMO

Increasing the stream of recycled plastic necessitates an approach beyond the traditional recycling via melting and re-extrusion. Various chemical recycling processes have great potential to enhance recycling rates. In this Review, a summary of the various chemical recycling routes and assessment via life-cycle analysis is complemented by an extensive list of processes developed by companies active in chemical recycling. We show that each of the currently available processes is applicable for specific plastic waste streams. Thus, only a combination of different technologies can address the plastic waste problem. Research should focus on more realistic, more contaminated and mixed waste streams, while collection and sorting infrastructure will need to be improved, that is, by stricter regulation. This Review aims to inspire both science and innovation for the production of higher value and quality products from plastic recycling suitable for reuse or valorization to create the necessary economic and environmental push for a circular economy.

5.
J Am Chem Soc ; 141(47): 18814-18824, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31682134

RESUMO

Producing aromatics directly from the smallest hydrocarbon building block, methane, is attractive because it could help satisfy increasing demand for aromatics while filling the gap created by decreased production from naphtha crackers. The system that catalyzes the direct methane dehydroaromatization (MDA) best so far is Mo supported on zeolite. Mo has shown to outperform other transition metals (TMs). Here we attempt to explain the superiority of Mo by directly comparing Fe and Mo supported on HZSM-5 zeolite. To determine the most important parameters responsible for the superior performance of Mo, detailed characterization using X-ray absorption spectroscopy (XAS) techniques combined with catalytic testing and theoretical calculations are performed. The higher abundance of mono- and dimeric sites for the Mo system, their ease of carburization in methane, as well as intrinsically lower activation energy barriers of breaking the methane C-H bond over Mo explain the better catalytic performance. In addition, a pretreatment in CO is presented to more easily carburize Fe and thereby improve its catalytic performance.

6.
Catal Sci Technol ; 14(4): 894-902, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38379714

RESUMO

While plastics-to-plastics recycling via melting and re-extrusion is often the preferred option due to a relatively low CO2 footprint, this technique requires a highly sorted waste stream and plastic properties can often not be maintained. Obtaining aromatics, such as benzene, toluene, and xylene (BTX), via catalytic pyrolysis of polyolefins, such as polypropylene and polyethylene, offers another attractive recycling technology. In this process, a discarded crude oil refinery catalyst (ECAT) was previously shown to lower the unwanted formation of deactivating coke species compared to a fresh crude oil refinery catalyst (FCC-cat), while yielding 20 wt% aromatics from polypropylene. In this work, we study the underlying reaction mechanism for this chemical recycling process over the fresh and used refinery catalyst as well as a model system, not containing any zeolite material, using a combination of microscopy and spectroscopy. More specifically, by using in situ fluorescence microscopy, in situ infrared spectroscopy, in situ ultraviolet-visible spectroscopy as well as ex situ solid-state nuclear magnetic resonance, we observe highly fluorescent methylated aromatic intermediates that differ for the three catalyst materials under study both in their fluorescence, IR, UV-vis, and NMR spectroscopy features. This detailed micro-spectroscopic comparison informs which potential reaction intermediates lead to increased coke formation. Our results suggests that a next generation of catalyst materials for this process would profit from a higher accessibility and a milder acidity compared to an FCC-cat and shows the great potential of using ECAT to reduce coking and obtain a BTX stream, which could be become the chemical building blocks for the manufacturing of e.g., plastics and coating materials.

7.
ChemSusChem ; 17(13): e202301426, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38373235

RESUMO

Although biomass-based alternatives for the manufacturing of bioplastic films are an important aspect of a more sustainable future, their physicochemical properties need to be able to compete with the existing market to establish them as a viable alternative. One important factor that is often neglected is the long-term stability of renewables-based functional materials, as they should neither degrade after a day or week, nor last forever. One material showing high potential in this regard, also due to its intrinsic biodegradability and antibacterial properties, is chitosan, which can form stable, self-standing films. We previously showed that green additives introduce a broad tunability of the chitosan-based material properties. In this work, we investigate the long-term stability and related degradation processes of chitosan-based bioplastics by assessing their physicochemical properties over 400 days. It was found that the film properties change similarly for samples stored in the fridge (4 °C, dark) as at ambient conditions (20 °C, light/dark cycles of the day). Additives with high vapor pressure, such as glycerol, evaporate and degrade, causing both brittleness and discoloration. In contrast, films with the addition of crosslinking additives, such as citric acid, show high stability also over a long time, bearing great preconditions for practical applications. This knowledge serves as a stepping-stone to utilizing chitosan as an alternative material for renewable-resourced bioplastic products.

9.
ChemSusChem ; 17(7): e202301198, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009265

RESUMO

To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.

10.
ChemSusChem ; : e202401141, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255052

RESUMO

Testing the performance for the catalytic pyrolysis of plastic waste is hampered by mass transfer limitations induced by a size mismatch between the catalyst's pores and the bulky polymer molecules. To investigate this aspect, the behavior of a series of microporous and mesoporous materials was assessed in the catalytic pyrolysis of polyethylene (PE). More specifically, a mesoporous material, namely sulfated zirconia (Zr(SO4)2) on SBA-15, was synthesized to increase the pore accessibility, which reduces mass transfer limitations and thereby enables to better assess the effect of active site density. To demonstrate this approach, mesoporous SBA-15 was compared to microporous zeolite Y. Using the degradation temperature during thermogravimetric analysis as a measure of activity, no correlation between acidity and activity was observed for microporous zeolite Y. However, depending on the Mw of PE, the reactivity of the mesoporous catalysts increased with increasing Zr(SO4)2 weight loading, showing that utilizing a mesoporous catalyst can overcome the accessibility limitations at least partially, which was further confirmed by polymer melt infiltration and in situ X-ray diffraction. Product analysis revealed that more aromatics and coke were produced with zeolite Y. The mesoporous material remained active and structurally intact and catalyses PE degradation via acid- and radical-based pathways.

11.
RSC Mechanochem ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39267902

RESUMO

Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.

12.
Chem Sci ; 14(37): 10068-10080, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37772101

RESUMO

Catalytic cracking is a promising approach to chemically recycle polyolefins by converting them into smaller hydrocarbons like naphtha, and important precursors of various platform chemicals, such as aromatics. Cracking catalysts, commonly used in the modern refinery and petrochemical industry, are tailored to process gaseous or liquid feedstock. Polyolefins, however, are very large macromolecules that form highly viscous melts at the temperatures required to break their backbone C-C bonds. Therefore, mass transport is expected to limit the performance of traditional cracking catalysts when applied to the conversion of polymers. In this work, we study these effects during the cracking of polypropylene (PP) over catalysts utilized in the fluid catalytic cracking (FCC) process. Thermogravimetric experiments using PP of varying molecular weight (Mw) and catalysts of varying accessibility showed that low Mw model polymers can be cracked below 275 °C, while PP of higher Mw required a 150 °C higher temperature. We propose that this difference is linked to different degrees of mass transport limitations and investigated this at length scales ranging from milli- to nanometers, utilizing in situ optical microscopy and electron microscopy to inspect cut open catalyst-polymer composites. We identified the main cause of transport limitations as the significantly higher melt viscosity of high Mw polymers, which prohibits efficient catalyst-polymer contact. Additionally, the high Mw polymer does not enter the inner pore system of the catalyst particles, severely limiting utilization of the active sites located there. Our results demonstrate that utilizing low Mw polymers can lead to a significant overestimation of catalyst activity, and suggest that polyolefins might need to undergo a viscosity reducing pre-treatment in order to be cracked efficiently.

13.
ChemSusChem ; 16(20): e202300585, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37549200

RESUMO

To switch to alternatives for fossil-fuel-based polymer materials, renewable raw materials from green resources should be utilized. Chitosan is such a material that is a strong, but workable derivative from chitin, obtained from crustaceans. However, various applications ask for specific plastic properties, such as certain flexibility, hardness and transparency. With different additives, also obtainable from green resources, chitosan-based composites in the form of self-supporting films, ranging from very hard and brittle to soft and flexible were successfully produced. The additives turned out to belong to one of three categories, namely linear, non-linear, or crosslinking additives. The non-linear additives could only be taken up to a certain relative amount, whereas the uptake of linear additives was not limited within the range of our experiments. Additives with multiple functional groups tend to crosslink chitosan even at room temperature in an acidic medium. Finally, it was shown that dissolving the chitosan in acetic acid and subsequently drying the matrix as a film results in reacetylation compared to the starting chitosan source, resulting in a harder material. With these findings, it is possible to tune the properties of chitosan-based polymer materials, making a big step towards application of this renewable polymer within consumer goods.

14.
Front Microbiol ; 12: 673553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220756

RESUMO

Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.

15.
Chem Sci ; 9(21): 4801-4807, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29910931

RESUMO

The mechanism of methane activation on Mo/HZSM-5 is not yet fully understood, despite the great interest in methane dehydroaromatization (MDA) to replace aromatics production in oil refineries. It is difficult to assess the exact nature of the active site due to fast coking. By pre-carburizing Mo/HZSM-5 with carbon monoxide (CO), the MDA active site formation was isolated from coke formation. With this a clear 13C NMR signal solely from the active site and not obscured by coke was obtained, and it revealed two types of likely molecular Mo (oxy-)carbidic species in addition to the ß-Mo2C nanoparticles often mentioned in the literature. Furthermore, separating the active site formation from coking by pre-carburization helped us examine how methane is activated on the catalytic site by carrying out MDA using isotopically labelled methane (13CH4). Carbon originating from the pre-formed carbide was incorporated into the main products of the reaction, ethylene and benzene, demonstrating the dynamic behavior of the (oxy-)carbidic active sites.

16.
Nat Chem ; 10(8): 897, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29991809

RESUMO

In the version of this Article originally published, on the right side of Fig. 4b, the 'Aromatic cycle' label was erroneously shifted outside of the central circular arrow into a position on part of the reaction cycle. This has been corrected in the online versions of the Article.

17.
Nat Chem ; 10(8): 804-812, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941905

RESUMO

The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure-performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite 'ZSM-5' for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA