Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298231

RESUMO

Synthesis of silver nanoparticles using extracts from plants is an advantageous technological alternative to the traditional colloidal synthesis due to its simplicity, low cost, and the inclusion of environmentally friendly processes to obtain a new generation of antimicrobial compounds. The work describes the production of silver and iron nanoparticles using sphagnum extract as well as traditional synthesis. Dynamic light scattering (DLS) and laser doppler velocimetry methods, UV-visible spectroscopy, transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), dark-field hyperspectral microscopy, and Fourier-transform infrared spectroscopy (FT-IR) were used to study the structure and properties of synthesized nanoparticles. Our studies demonstrated a high antibacterial activity of the obtained nanoparticles, including the formation of biofilms. Nanoparticles synthesized using sphagnum moss extracts likely have high potential for further research.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Antibacterianos/química , Química Verde/métodos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ferro
2.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575834

RESUMO

The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63-67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10-50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.


Assuntos
Bentonita/química , Argila/química , Preparações Farmacêuticas/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Temperatura , Purificação da Água
3.
Analyst ; 145(4): 1202-1206, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31859691

RESUMO

A new strategy for ELISA-based detection in small volumes based on porous antibody-containing protein microparticles was developed and employed for the determination of human immunoglobulin G demonstrating both increase in sensitivity and decrease in antibody consumption by ten times compared to a conventional planar ELISA.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/química , Microesferas , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Imunoglobulina G/imunologia , Limite de Detecção , Modelos Moleculares , Porosidade , Conformação Proteica
4.
Phys Chem Chem Phys ; 22(17): 9713-9722, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329476

RESUMO

The fast development of protein therapeutics has resulted in a high demand for advanced delivery carriers that can effectively host therapeutic proteins, preserve their bioactivity and release them on demand. Accordingly, vaterite CaCO3 crystals have attracted special attention as sacrificial templates for protein encapsulation in micro- and nanoparticles (capsules and beads, respectively) under mild biofriendly conditions. This study aimed to better understand the mechanism of protein loading into crystals as a primary step for protein encapsulation. The loading of three therapeutic proteins (250 kDa catalase, 5.8 kDa insulin, and 6.5 kDa aprotinin) was investigated for crystals with different porosities. However, unexpectedly, the protein loading capacity was not consistent with the protein molecular weight. It solely depends on the inter-protein interactions in the bulk solution in the presence of crystals and that inside the crystals. The smallest protein aprotinin aggregates in the bulk (its aggregate size is about 100 nm), which prohibits its loading into the crystals. Insulin forms hexamers in the bulk, which can diffuse into the crystal pores but tend to aggregate inside the pores, suppressing protein diffusion inward. Catalase, the largest protein tested, does not form any aggregates in the bulk and diffuses freely into the crystals; however, its diffusion into small pores is sterically restricted. These findings are essential for the encapsulation of protein therapeutics by means of templating based on CaCO3 crystals and for the engineering of protein-containing microparticles having desired architectures.


Assuntos
Carbonato de Cálcio/química , Sistemas de Liberação de Medicamentos , Proteínas/química , Proteínas/metabolismo , Peso Molecular , Porosidade , Ligação Proteica
5.
Langmuir ; 35(26): 8574-8583, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964686

RESUMO

The importance of thermodynamics does not need to be emphasized. Indeed, elevated temperature processes govern not only industrial scale production but also self-assembly, chemical reaction, interaction between molecules, etc. Not surprisingly, biological processes typically take place at a specific temperature. Here, we look at possibilities to raise the localized temperature by a laser around noble-metal nanoparticles incorporated into shells of layer-by-layer polyelectrolyte microcapsules-freely suspended delivery vehicles in an aqueous solution, developed in the Department of Interfaces, Max Planck Institute of Colloids and Interfaces, headed by Helmuth Möhwald. Understanding the mechanisms of localized temperature rise is essential, that is why we analyze the influence of incident intensity, nanoparticle size, their distribution and aggregation state, as well as thermodynamics at the nanoscale. This leads us to scrutinize "global" (used for thermal encapsulation) versus "local" (used for release of encapsulated materials) temperature rise. Similar analysis is extended to planar polymeric coatings, the lipid membrane system of vesicles and cells, on which nanoparticles are adsorbed. Insights are provided into the mechanisms of physicochemical and biological effects, the nature of which has always been profoundly, interactively, and engagingly discussed in the Department of Interfaces. This analysis is combined with recent developments providing outlook and highlighting a broad range of emerging applications.

6.
Langmuir ; 34(12): 3597-3603, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29502414

RESUMO

Photoinduced size changes in microgel particles loaded with gold nanoparticles (AuNPs) were investigated with an extended multiangle dynamic light scattering (DLS) setup. The DLS setup was equipped with a conventional laser (λ = 633 nm) to determine the microgel particle size. Additionally, a laser (λ = 532 nm) is installed to study the photoresponsive behavior of the AuNP-microgel hybrids. The wavelength of 532 nm is close to the absorption maximum of the plasmon resonance of the AuNPs used in the present study (i.e. spherical AuNPs with a diameter of 14 nm). The extended DLS setup enables us to follow in situ the change in microgel size during irradiation. The light stimulus is directly correlated with the size changes of the hybrid particles and the photothermal effect depends on the intensity of the excitation laser. The increase in excitation laser intensity results in a size reduction of hybrid particles because of the ability of AuNPs to partially transform the absorbed photon energy into heat which is emitted into the surrounding microgel network.

7.
Langmuir ; 32(17): 4229-38, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27052835

RESUMO

The spherical vaterite CaCO3 microcrystals are nowadays widely used as sacrificial templates for fabrication of various microcarriers made of biopolymers (e.g., proteins, nucleic acids, enzymes) due to porous structure and mild template elimination conditions. Here, we demonstrated for the first time that polymer microcarriers with tuned internal nanoarchitecture can be designed by employing the CaCO3 crystals of controlled porosity. The layer-by-layer deposition has been utilized to assemble shell-like (hollow) and matrix-like (filled) polymer capsules due to restricted and free polymer diffusion through the crystal pores, respectively. The crystal pore size in the range of few tens of nanometers can be adjusted without any additives by variation of the crystal preparation temperature in the range 7-45 °C. The temperature-mediated growth mechanism is explained by the Ostwald ripening of nanocrystallites forming the crystal secondary structure. Various techniques including SEM, AFM, CLSM, Raman microscopy, nitrogen adsorption-desorption, and XRD have been employed for crystal and microcapsule analysis. A three-dimensional model is introduced to describe the crystal internal structure and predict the pore cutoff and available surface for the pore diffusing molecules. Inherent biocompatibility of CaCO3 and a possibility to scale the porosity in the size range of typical biomacromolecules make the CaCO3 crystals extremely attractive tools for template assisted designing tailor-made biopolymer-based architectures in 2D to 3D targeted at drug delivery and other bioapplications.

8.
Phys Chem Chem Phys ; 18(11): 7866-74, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26911320

RESUMO

In this study, the effect of temperature on the build-up of exponentially growing polyelectrolyte multilayer films was investigated. It aims at understanding the multilayer growth mechanism as crucially important for the fabrication of tailor-made multilayer films. Model poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers were assembled in the temperature range of 25-85 °C by layer-by-layer deposition using a dipping method. The film growth switches from the exponential to the linear regime at the transition point as a result of limited polymer diffusion into the film. With the increase of the build-up temperature the film growth rate is enhanced in both regimes; the position of the transition point shifts to a higher number of deposition steps confirming the diffusion-mediated growth mechanism. Not only the faster polymer diffusion into the film but also more porous/permeable film structure are responsible for faster film growth at higher preparation temperature. The latter mechanism is assumed from analysis of the film growth rate upon switching of the preparation temperature during the film growth. Interestingly, the as-prepared films are equilibrated and remain intact (no swelling or shrinking) during temperature variation in the range of 25-45 °C. The average activation energy for complexation between PLL and HA in the multilayers calculated from the Arrhenius plot has been found to be about 0.3 kJ mol(-1) for monomers of PLL. Finally, the following processes known to be dependent on temperature are discussed with respect to the multilayer growth: (i) polymer diffusion, (ii) polymer conformational changes, and (iii) inter-polymer interactions.

9.
Langmuir ; 31(39): 10813-21, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26345198

RESUMO

Development of tailor-made porous polymer scaffolds acting as a temporary tissue-construct for cellular organization is of primary importance for tissue engineering applications. Control over the gel porosity is a critical issue due to the need for cells to proliferate and migrate and to ensure the transport of nutrition and metabolites. Gel loading with bioactive molecules is desired for target release of soluble signals to guide cell function. Calcium-alginate hydrogels are one of the most popular gels successfully utilized as polymer scaffolds. Here we propose a benchtop approach to design porous alginate gels by dispersion of CaCO3 vaterite crystals in sodium alginate followed by the crystal elimination. CaCO3 crystals play a triple role being (i) cross-linkers (a source of calcium ions to cross-link gel network), (ii) pore-makers (leaching of crystals retains the empty pores), and (iii) reservoirs with (bio)molecules (by molecule preloading into the crystals). Pore dimensions, interconnectivity, and density can be adjusted by choosing the size, concentration, and packing of the sacrificial CaCO3 crystals. An opportunity to load the pores with biomolecules was demonstrated using FITC-labeled dextrans of different molecular masses from 10 to 500 kDa. The dextrans were preloaded into CaCO3 vaterite crystals, and the subsequent crystal removal resulted in encapsulation of dextrans inside the pores of the gel. The dextran release rate from the gel pores depends on the equilibration of the gel structure as concluded by comparing dextran release kinetics during gelation (fast) and dextran diffusion into the performed gel (slower). Macromolecule binding to the gel is electrostatically driven as found for lysozyme and insulin. The application of porous gels as scaffolds potentially offering biomacromolecule encapsulation/release performance might be useful for alginate gel-based applications such as tissue engineering.


Assuntos
Alginatos/química , Géis , Carbonato de Cálcio/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Alicerces Teciduais
10.
Analyst ; 140(15): 4981-6, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26040199

RESUMO

Herein, we have designed composite SERS-active micro-satellites, which exhibit a dual role: (i) effective probes for determining cellular composition and (ii) optically movable and easily detectable markers. The satellites were synthesized by the layer-by-layer assisted decoration of silica microparticles with metal (gold or silver) nanoparticles and astralen in order to ensure satellite SERS-based microenvironment probing and satellite recognition, respectively. A combination of optical tweezers and Raman spectroscopy can be used to navigate the satellites to a certain cellular compartment and probe the intracellular composition following cellular uptake. In the future, this developed approach may serve as a tool for single cell analysis with nanometer precision due to the multilayer surface design, focusing on both extracellular and intracellular studies.


Assuntos
Fibroblastos/citologia , Pinças Ópticas , Dióxido de Silício/química , Análise de Célula Única/instrumentação , Análise Espectral Raman/instrumentação , Animais , Linhagem Celular , Desenho de Equipamento , Ouro/química , Nanopartículas Metálicas/química , Camundongos , Prata/química
11.
Chemphyschem ; 15(13): 2817-22, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044943

RESUMO

We fabricated calcium carbonate particles with spherical, elliptical, star-like and cubical morphologies by varying relative salt concentrations and adding ethylene glycol as a solvent to slow down the rate of particle formation. The loading capacity of particles of different isotropic (spherical and cubical) and anisotropic (elliptical and star-like) geometries is investigated, and the surface area of such carriers is analysed. Potential applications of such drug delivery carriers are highlighted.


Assuntos
Carbonato de Cálcio/química , Portadores de Fármacos/química , Carbonato de Cálcio/síntese química , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos , Etilenoglicol/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Propriedades de Superfície
12.
Macromol Rapid Commun ; 35(16): 1408-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25042776

RESUMO

Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 µm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light.


Assuntos
Polímeros/química , Células 3T3 , Animais , Carbonato de Cálcio/síntese química , Carbonato de Cálcio/química , Bovinos , Adesão Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Camundongos , Microscopia Confocal , Microesferas , Concentração Osmolar , Polímeros/metabolismo , Polímeros/farmacologia , Porosidade , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
13.
ACS Appl Bio Mater ; 7(5): 2872-2886, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38721671

RESUMO

Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 µm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 µg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.


Assuntos
Antibacterianos , Carbonato de Cálcio , Teste de Materiais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Propriedades de Superfície , Staphylococcus aureus/efeitos dos fármacos
14.
Langmuir ; 29(12): 4140-7, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23470204

RESUMO

Surface-enhanced Raman scattering (SERS) microspectroscopy is a very promising label-free, noncontact, and nondestructive method for real-time monitoring of extracellular matrix (ECM) development and cell integration in scaffolds for tissue engineering. Here, we prepare a new type of micrometer-sized SERS substrate, core-shell microparticles composed of solid carbonate core coated with silver nanoparticles and polyhedral multishell fullerene-like structure, astralen. Astralen has been assembled with polyallylamine hydrochloride (PAH) by the layer-by-layer manner followed by Ag nanoparticle formation by means of a silver mirror reaction, giving the final structure of composite particles CaCO3(PAH/astralen)x/Ag, where x = 1-3. The components of the microparticle carry multiple functionalities: (i) an easy identification by Raman imaging (photostable astralen) and (ii) SERS due to a rough surface of Ag nanoparticles. A combination of Ag and astralen nanoparticles provides an enhancement of astralen Raman signal by more than 1 order of magnitude. Raman signals of commonly used scaffold components such as polylactide and polyvinyl alcohol as well as ECM component (hyaluronic acid) are significantly enhanced. Thus, we demonstrate that new mechanically robust and easily detectable (by astralen signal or optically) core-shell microspheres based on biocompatible CaCO3 can be used as SERS platform. Particle design opens many future perspectives for fabrication of SERS platforms with multiple functions for biomedical applications, for example, for theranostic.


Assuntos
Carbonato de Cálcio/química , Fulerenos/química , Nanopartículas Metálicas/química , Poliaminas/química , Prata/química , Análise Espectral Raman/métodos , Ácido Hialurônico/química , Microesferas , Imagem Molecular/métodos , Tamanho da Partícula , Poliésteres/química , Álcool de Polivinil/química , Propriedades de Superfície
15.
Biomacromolecules ; 14(6): 1927-35, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23621317

RESUMO

Here, we present a new microparticle system for the selective detection and magnetic removal of bacteria from contaminated solutions. The novelty of this system lies in the combination of a biocompatible scaffold reducing unspecific interactions with high capacity for bacteria binding. We apply highly porous poly(ethylene glycol) (PEG) microparticles and functionalize them, introducing both sugar ligands for specific bacteria targeting and cationic moieties for electrostatic loading of superparamagnetic iron oxide nanoparticles. The resulting magnetic, porous, sugar-functionalized (MaPoS) PEG microgels are able to selectively bind and discriminate between different strains of bacteria Escherichia coli . Furthermore, they allow for a highly efficient removal of bacteria from solution as their increased surface area can bind three times more bacteria than nonporous particles. All in all, MaPoS particles represent a novel generation of magnetic beads introducing for the first time a porous, biocompatible and easy to functionalize scaffold and show great potential for various biotechnological applications.


Assuntos
Bactérias/isolamento & purificação , Carboidratos/química , Géis , Magnetismo , Polietilenoglicóis/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas , Soluções
16.
RSC Adv ; 13(16): 10542-10555, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37021104

RESUMO

Silver nanoparticles (AgNPs) represent one of the most commercialised metal nanomaterials, with an extensive number of applications that span from antimicrobial products to electronics. Bare AgNPs are very susceptible to aggregation, and capping agents are required for their protection and stabilisation. The capping agents can endow new characteristics which can either improve or deteriorate AgNPs (bio)activity. In the present work, five different capping agents were studied as stabilizing agents for AgNPs: trisodium citrate (citrate), polyvinylpyrrolidone (PVP), dextran (Dex), diethylaminoethyl-dextran (DexDEAE) and carboxymethyl-dextran (DexCM). The properties of the AgNPs were studied using a set of methods, including transmission electron microscopy, X-ray diffraction, thermogravimetric analysis and ultraviolet-visible and infrared spectroscopy. Coated and bare AgNPs were also tested against Escherichia coli, methicillin-resistance Staphylococcus aureus and Pseudomonas aeruginosa to analyse their capacity to suppress bacterial growth and eradicate biofilms of clinically relevant bacteria. The results showed that all the capping agents endow long-term stability for the AgNPs in water; however, when the AgNPs are in bacterial culture media, their stability is highly dependent on the capping agent properties due to the presence of electrolytes and charged macromolecules such as proteins. The results also showed that the capping agents have a substantial impact on the antibacterial activity of the AgNPs. The AgNPs coated with the Dex and DexCM were the most effective against the three strains, due to their better stability which resulted in the release of more silver ions, better interactions with the bacteria and diffusion into the biofilms. It is hypothesized that the antibacterial activity of capped AgNPs is governed by a balance between the AgNPs stability and their ability to release silver ions. Strong adsorption of capping agents like PVP on the AgNPs endows higher colloidal stability in culture media; however, it can decrease the rate of Ag+ release from the AgNPs and reduce the antibacterial performance. Overall, this work presents a comparative study between different capping agents on the properties and antibacterial activity of AgNPs, highlighting the importance of the capping agent in their stability and bioactivity.

17.
Materials (Basel) ; 17(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203957

RESUMO

In recent decades, there has been increased attention to the role of layer-by-layer assembled bio-polymer 3D structures (capsules, beads, and microgels) for biomedical applications. Such free-standing multilayer structures are formed via hard templating onto sacrificial cores such as vaterite CaCO3 crystals. Immobilization of these structures onto solid surfaces (e.g., implants and catheters) opens the way for the formulation of advanced bio-coating with a patterned surface. However, the immobilization step is challenging. Multiple approaches based mainly on covalent binding have been developed to localize these multilayer 3D structures at the surface. This work reports a novel strategy to formulate multilayer surface-supported microgels (ss-MG) directly on the surface via hard templating onto ss-CaCO3 pre-grown onto the surface via the direct mixing of Na2CO3 and CaCl2 precursor solutions. ss-MGs were fabricated using biopolymers: polylysine (PLL) as polycation and three polyanions-hyaluronic acid (HA), heparin sulfate (HS), and alginate (ALG). ss-MG biodegradation was examined by employing the enzyme trypsin. Our studies indicate that the adhesion of the ss-MG to the surface and its formation yield directly correlate with the mobility of biopolymers in the ss-MG, which decreases in the sequence of ALG > HA > HS-based ss-MGs. The adhesion of HS-based ss-MGs is only possible via heating during their formation. Dextran-loading increases ss-MG formation yield while reducing ss-MG shrinking. ss-MGs with higher polymer mobility possess slower biodegradation rates, which is likely due to diffusion limitations for the enzyme in more compact annealed ss-MGs. These findings provide valuable insights into the mechanisms underlying the formation and biodegradation of surface-supported biopolymer structures.

18.
Nanoscale ; 15(5): 2197-2205, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633359

RESUMO

To implement a specific function, cells recognize multiple physical and chemical cues and exhibit molecular responses at their interfaces - the boundary regions between the cell lipid-based membrane and the surrounding extracellular matrix (ECM). Mimicking the cellular external microenvironment presents a big challenge in nanoarchitectonics due to the complexity of the ECM and lipid membrane fragility. This study reports an approach for the assembly of a lipid bilayer, mimicking the cellular membrane, placed on top of a polyelectrolyte multilayer cushion made of hyaluronic acid and poly-L-lysine - a nanostructured biomaterial, which represents a 3D artificial ECM. Model proteins, lysozyme and α-lactalbumin, (which have similar molecular masses but carry opposite net charges) have been employed as soluble signalling molecules to probe their interaction with these hybrids. The formation of a lipid bilayer and the intermolecular interactions in the hybrid structure are monitored using a quartz crystal microbalance and confocal fluorescence microscopy. Electrostatic interactions between poly-L-lysine and the externally added proteins govern the transport of proteins into the hybrid. Designed ECM-cell mimicking hybrids open up new avenues for modelling a broad range of cell membranes and ECM and their associated phenomena, which can be used as a tool for synthetic biology and drug screening.


Assuntos
Bicamadas Lipídicas , Polilisina , Polieletrólitos , Bicamadas Lipídicas/química , Polilisina/química , Membrana Celular , Matriz Extracelular
19.
Polymers (Basel) ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850324

RESUMO

Polyelectrolyte multilayers (PEM) loaded with bioactive molecules such as proteins serve as excellent mimics of an extracellular matrix and may find applications in fields such as biomedicine and cell biology. A question which is crucial to the successful employment of PEMs is whether conformation and bioactivity of the loaded proteins is preserved. In this work, the polarized attenuated total reflection Fourier transform infrared (ATR-FTIR) technique is applied to investigate the conformation of the protein lysozyme (Lys) loaded into the poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers. Spectra are taken from the protein in the PEMs coated onto an ATR crystal during protein adsorption and desorption. For comparison, a similar investigation is performed for the case of Lys in contact with the uncoated crystal. The study highlights the presence of both "tightly" and "poorly bound" Lys fractions in the PEM. These fractions differ in their conformation and release behavior from the PEM upon washing. Comparison of spectra recorded with different polarizations suggests preferential orientation of alpha helical structures, beta sheets and turns in the "tightly bound" Lys. In contrast, the "poorly bound" fraction shows isotropic orientation and its conformation is well preserved.

20.
J Colloid Interface Sci ; 631(Pt A): 165-180, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36375299

RESUMO

Silver nanoparticles (AgNPs) have found widespread commercial applications due to their unique physical and chemical properties. However, their relatively poor stability remains a main problem. An ideal way to improve the stability of AgNPs is not only to endow colloidal stability to individual nanoparticles but also to protect them from environmental factors that induce their agglomeration, like variation of ionic strength and pH, presence of macromolecules, etc. Mesoporous calcium carbonate vaterite crystals (CaCO3 vaterite) have recently attracted significant attention as inexpensive and biocompatible carriers for the encapsulation and controlled release of both drugs and nanoparticles. This work aimed to develop an approach to load AgNPs into CaCO3 vaterite without affecting their properties. We focused on improving the colloidal stability of AgNPs by using different capping agents, and understanding the mechanism behind AgNPs loading and release from CaCO3 crystals. Various methods were applied to study the AgNPs and CaCO3 crystals loaded with AgNPs (CaCO3/AgNPs hybrids), such as scanning and transmission electron microscopy, X-ray diffraction, infrared and mass spectrometry. The results demonstrated that polyvinylpyrrolidone and positively charged diethylaminoethyl-dextran can effectively keep the colloidal stability of AgNPs during co-precipitation with CaCO3 crystals. CaCO3/AgNPs hybrids composed of up to 4 % weight content of nanoparticles were produced, with the loading mechanism being well-described by the Langmuir adsorption model. In vitro release studies demonstrated a burst release of stable AgNPs at pH 5.0 and a sustained release at pH 7.5 and 9.0. The antibacterial studies showed that these hybrids are effective against Escherichia coli, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, three important bacteria responsible for nosocomial infections. The developed approach opens a new way to stabilise, protect, store and release AgNPs in a controlled manner for their use as antimicrobial agents.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Prata/química , Nanopartículas Metálicas/química , Carbonato de Cálcio/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA