Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(1): 012502, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841540

RESUMO

A near-threshold proton resonance in ^{11}B at E_{ex}=11.44±0.04 MeV is observed via the reaction ^{10}Be(d,n)^{11}Be→^{10}Be+p in inverse kinematics, measured with a beam of the radioactive isotope ^{10}Be. The resonance energy at E_{res}=211(40) keV is consistent with a proton signal observed by Ayyad et al. in the ß-delayed proton decay of ^{11}Be. By comparison to a distorted wave Born approximation calculation, a 0.27(6) spectroscopic factor is extracted and a tentative (ℓ=0) character is assigned for this resonance. The significant cross section in the proton-transfer (d,n) reaction, as well as the observation of its proton-decay signal, point to the threshold-resonance character of this state. The position of this state, its structure, and strong coupling to the s-wave continuum represent an ideal case to study quantum near-threshold many-body dynamics of unstable states. The presence of this state is an important step toward understanding the excessively large beta-delayed proton-decay branch of ^{11}Be.

2.
Phys Rev Lett ; 118(5): 052501, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28211717

RESUMO

Previous experiments observed a 4^{+} state in the N=28 nucleus ^{44}S and suggested that this state may exhibit a hindered E2-decay rate, inconsistent with being a member of the collective ground state band. We populate this state via two-proton knockout from a beam of exotic ^{46}Ar projectiles and measure its lifetime using the recoil distance method with the GRETINA γ-ray spectrometer. The result, 76(14)_{stat}(20)_{syst} ps, implies a hindered transition of B(E2;4^{+}→2_{1}^{+})=0.61(19) single-particle or Weisskopf units strength and supports the interpretation of the 4^{+} state as a K=4 isomer, the first example of a high-K isomer in a nucleus of such low mass.

3.
Phys Rev Lett ; 117(18): 182701, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835017

RESUMO

The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

4.
Phys Rev Lett ; 111(26): 262501, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483792

RESUMO

Study of ß+ decay of the exotic Tz=-3/2 nucleus 55Cu, via delayed γ rays, has revealed a strongly isospin mixed doublet (4599-4579 keV) in 55Ni, which represents the fragmented and previously unknown isobaric analog of the ground state of 55Cu. The observed small log ft values to both states in the doublet confirm the superallowed Fermi ß decay. The near degeneracy of a pair of 3/2- levels in 55Ni results in the strong isospin mixing. The isospin mixing matrix element between the T=3/2 and T=1/2 levels is inferred from the experiment to be 9(1) keV, which agrees well with the matrix element of the charge symmetry breaking shell model Hamiltonian of Ormand and Brown. A precise value of the half-life of 55Cu at 57(3) ms was also obtained.

5.
Phys Rev Lett ; 108(10): 102501, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463404

RESUMO

We report on the first observation of dineutron emission in the decay of 16Be. A single-proton knockout reaction from a 53 MeV/u 17B beam was used to populate the ground state of 16Be. 16Be is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of 16Be was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

6.
Phys Rev Lett ; 101(14): 142504, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851524

RESUMO

The beta decay of 33Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, 33Al, are found to have nearly 2p-2h intruder configuration, thus extending the "island of inversion" beyond Mg. The allowed direct beta-decay branch to the 5/2{+} ground state of the daughter nucleus 33Al implies positive parity for the ground state of the parent 33Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of 33Mg to explain all of the experimental observables.

7.
Phys Rev Lett ; 99(16): 162501, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995242

RESUMO

Rare isotope beams of neutron-deficient 106,108,110Sn from the fragmentation of 124Xe were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,0(1)(+)-->2(1)(+)) values for 108Sn and 110Sn and the results obtained for the 106Sn show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z = 50 shell to the structure of low-energy excited states in this region.

8.
Phys Rev Lett ; 94(16): 162501, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904217

RESUMO

The low-energy level structure of the exotic Na isotopes (28,29)Na has been investigated through beta-delayed gamma spectroscopy. The N=20 isotones for Z=10-12 are considered to belong to the "island of inversion" where intruder configurations dominate the ground state wave function. However, it is an open question as to where and how the transition from normal to intruder dominated configurations happens in an isotopic chain. The present work, which presents the first detailed spectroscopy of (28,29)Na, clearly demonstrates that such a transition in the Na isotopes occurs between 28Na (N=17) and 29Na (N=18), supporting the smaller N=20 shell gap in neutron-rich sd shell nuclei. The evidence for inverted shell structure is found in beta-decay branching ratios, intruder dominated spectroscopy of low-lying states, and shell model analysis.

9.
Phys Rev Lett ; 94(13): 132501, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15903988

RESUMO

Excited states in 20O were populated in the reaction 10Be(14C,alpha) at Florida State University (FSU). Charged particles were detected with a particle telescope consisting of 4 annularly segmented Si surface barrier detectors and gamma radiation was detected with the FSU gamma detector array. Five new states were observed below 6 MeV from the alpha-gamma and alpha-gamma-gamma coincidence data. Shell model calculations suggest that most of the newly observed states are core-excited 1p-1h excitations across the N=Z=8 shell gap. Comparisons between experimental data and calculations for the neutron-rich O and F isotopes imply a steady reduction of the p-sd shell gap as neutrons are added.

10.
Phys Rev Lett ; 85(19): 4016-9, 2000 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-11056613

RESUMO

A rotationally invariant random interaction ensemble was realized in a single- j fermion model. A statistical approach reveals the random coupling of individual angular momenta as a source for the empirically known dominance of ground states with zero and maximum spin. The interpretation is supported by the structure of the ground state wave functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA