Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 14(23): e1800310, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29726099

RESUMO

Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity.


Assuntos
Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Imagem Óptica/métodos , Estresse Oxidativo/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , DNA/metabolismo , Ouro/toxicidade , Células HeLa , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
J Biol Chem ; 291(33): 17382-93, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27268055

RESUMO

A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics.


Assuntos
Chlamydomonas reinhardtii/química , Luz , Proteínas de Plantas/química , Rodopsina/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Rodopsina/genética , Rodopsina/metabolismo
3.
Nanomedicine ; 13(1): 317-327, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697619

RESUMO

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Absorção Cutânea , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 16(4): 6960-77, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826528

RESUMO

We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown. As a model compound we have chosen a larger amphiphilic molecule (fluorescent dye ATTO-Oxa12) with a molecular weight >700 Da that was applied to excised human skin. ATTO-Oxa12 penetrated through the stratum corneum (SC) into the viable epidermis as revealed by TIRFM of cryosections. Single particle tracking of ATTO-Oxa12 within SC sheets obtained by tape stripping allowed us to gain information on the localization as well as the lateral diffusion dynamics of these molecules. ATTO-Oxa12 appeared to be highly confined in the SC lipid region between (intercellular space) or close to the envelope of the corneocytes. Three main distinct confinement sizes of 52 ± 6, 118 ± 4, and 205 ± 5 nm were determined. We conclude that for this amphiphilic model compound several pathways through the skin exist.


Assuntos
Epiderme/metabolismo , Corantes Fluorescentes/farmacocinética , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Absorção Cutânea
5.
Molecules ; 21(1): E22, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26712722

RESUMO

Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue.


Assuntos
Dendrímeros/química , Sulfatos/química , Fluorescência , Glicerol/química , Humanos , Nanopartículas/química , Tamanho da Partícula
6.
J Control Release ; 299: 138-148, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30797867

RESUMO

In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 µg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Nanocápsulas/química , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Anti-Inflamatórios/farmacocinética , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Dexametasona/farmacocinética , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pele/efeitos dos fármacos
7.
J Biophotonics ; 11(4): e201700169, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29178669

RESUMO

The question whether nanoparticles can cross the skin barrier is highly debated. Even in intact skin rare events of deeper penetration have been reported, but technical limitations and possible artifacts require careful interpretation. In this study, horizontal scanning by 2-photon microscopy (2 PM) of full-thickness human skin samples placed in a lateral position yielded highly informative images for skin penetration studies of fluorescently tagged nanoparticles. Scanning of large fields of view allowed for detailed information on interfollicular and follicular penetration in tissue blocks without damaging the sample. Images in histomorphological correlation showed that 2P-excited fluorescence signals of fluorescently tagged 20 and 200 nm polystyrene nanoparticles preferentially accumulated in the stratum corneum (SC) and in the upper part of vellus hair follicles (HFs). Rare events of deeper penetration in the SC and in the infundibulum of vellus HFs were observed at sites of high focal particle aggregations. Wide-field 2 PM allows for imaging of nanoparticle penetration in large tissue blocks, whereas total internal reflection microscopy (TIRFM) enables selective detection of individual nanoparticles as well as clusters of nanoparticles in the SC and within the epidermal layer directly beneath the SC, thus confirming barrier crossing with high sensitivity.


Assuntos
Nanopartículas , Poliestirenos/química , Poliestirenos/metabolismo , Pele/metabolismo , Transporte Biológico , Epiderme/metabolismo , Corantes Fluorescentes/química , Folículo Piloso/metabolismo , Humanos , Microscopia de Fluorescência , Pele/diagnóstico por imagem
8.
Biomaterials ; 162: 60-70, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29438881

RESUMO

Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pele/citologia , Linhagem Celular , Sobrevivência Celular , Ensaio Cometa , Citometria de Fluxo , Humanos , Células de Langerhans/metabolismo , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo
9.
Eur J Pharm Biopharm ; 116: 111-124, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28115230

RESUMO

The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers. Here, we review some recent developments in the field of fluorescence microscopy, namely Fluorescence Lifetime Imaging Microscopy (FLIM)), for improved characterization of nanocarriers, their interactions and penetration into skin. In particular, FLIM allows for the discrimination of target molecules, e.g. fluorescently tagged nanocarriers, against the autofluorescent tissue background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle and its interactions with other biomolecules. Thus, FLIM shows the potential to overcome several limits of intensity based microscopy.


Assuntos
Nanopartículas/química , Nanopartículas/metabolismo , Pele/química , Pele/metabolismo , Administração Cutânea , Portadores de Fármacos/química , Humanos , Microscopia de Fluorescência/métodos , Nanomedicina/métodos , Absorção Cutânea
10.
Eur J Pharm Biopharm ; 110: 31-38, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810469

RESUMO

Drug loading capacity in nanostructured lipid carriers (NLC) depends on the formation of nanostructures within the lipid matrix. However, investigation of these nanostructures with sizes below the diffraction limit of visible light is quite challenging. Thus, until now the determination of structures and drug distribution within NLCs was not possible. Therefore, we aimed at developing a method to visualize the nanostructures within the lipid carriers. Model NLCs loaded with a lipophilic fluorescent drug mimetic, ATTO-Oxa12, were produced and investigated by single-molecule tracking and localization-based superresolution microscopy. Results revealed spherical ATTO-Oxa12-filled nanostructures with diameters of ∼70nm and 120-130nm, both smaller than the NLC size (∼160nm). The ATTO-Oxa12 diffusion constant was calculated from the single-molecule traces (D⩾1µm2/s) and indicated the distribution of the model drug in the oily component. Together these data suggest the existence of drug-loaded oily nanocompartments, which could fill up to ∼50% of the model NLCs' volume. In conclusion, a novel tool based on single-molecule microscopy is now available that allows for the precise determination of drug distribution and the characterization of lipid nanostructures, information that is paramount for optimizing lipid nanoparticle formulations.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Nanoestruturas/química , Imagem Individual de Molécula/métodos , Biomimética , Difusão , Sistemas de Liberação de Medicamentos , Corantes Fluorescentes/química , Lasers , Luz , Microscopia de Fluorescência , Óleos , Tamanho da Partícula , Espalhamento de Radiação , Software , Temperatura
11.
Eur J Pharm Biopharm ; 110: 39-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27810471

RESUMO

Lipid nanoparticles have gained increased interest in the field of dermal products because of various advantages such as improved drug absorption and controlled drug release. The main objective was to investigate the influence of drug solubility and type of lipid carrier on the in vitro drug release. Drugs of different solubilities in the release medium PBS pH 7.4 (dexamethasone: 0.1mg/ml and diclofenac sodium: 5.0mg/ml) and three different lipids (in which the drugs had the highest solubility), Gelucire® 50/13 (solid lipid, mp: 50°C), Witepsol® S55 (solid lipid, mp: 33.5-35.5°C) and Capryol® 90 (liquid lipid) were chosen. The lipid nanoparticles were prepared by high shear homogenization. All nanosuspensions were in the nanometer range (up to 400nm) and the drug encapsulation efficiency was between 84% and 95%. The drug release was prolonged over 48h without an initial burst release and was dependent on the lipid carrier. Formulations containing a higher amount of solid Gelucire® 50/13 released the drugs slower due to the high affinity of the drugs to this lipid product. Inclusion of the liquid lipid Capryol® 90 resulted in a less organized lipidic structures (softer particles) and therefore a faster drug release. Despite its higher water solubility, diclofenac was released slower than dexamethasone because of its higher solubility in the lipid carriers. DSC studies indicated a partial miscibility between the solid lipids and a good miscibility between the solid and liquid lipids. Primary studies using total internal reflection fluorescence (TIRF) microscopy indicated that it is possible to detect individual fluorescently labeled dexamethasone (DXM-F) molecules dissolved in the liquid lipid Capryol® 90. These studies will allow for the precise determination of the drug distribution within the lipid carrier, and the changes upon drug release. In conclusion, lipid carrier type and drug solubility in the lipid have a large influence on the in vitro drug release from lipid nanoparticles.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos , Lipídeos/química , Nanopartículas/química , Administração Cutânea , Varredura Diferencial de Calorimetria , Dexametasona/administração & dosagem , Dexametasona/química , Diclofenaco/administração & dosagem , Difusão , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Gorduras/química , Humanos , Concentração de Íons de Hidrogênio , Óleos/química , Tamanho da Partícula , Polímeros/química , Propilenoglicóis/química , Solubilidade , Tensoativos/química , Temperatura , Fatores de Tempo , Triglicerídeos/química
12.
Ann N Y Acad Sci ; 1405(1): 202-214, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28985028

RESUMO

Targeted topical application promises high drug concentrations in the skin and low systemic adverse effects. To locate drugs and drug-delivery systems like nanocarriers, fluorescent dyes are commonly used as drug surrogates or nanocarrier labels in micrographs of tissue sections. Here, we investigate how labeling degree, concentration of fluorophore, and nanocarrier may affect the interpretation of these micrographs. False-negative penetration results due to inter- and intramolecular quenching effects are likely. Using tecto-dendrimers as an example, we present a detailed analysis of pitfalls in the (semi-)quantitative evaluation of skin nanocarrier penetration. Fluorescence lifetime imaging microscopy (FLIM) allows distinguishing the target fluorescence of dye-tagged nanocarriers from skin autofluorescence, providing a highly sensitive tool for clear-cut localization of the nanocarriers. Cluster-FLIM images reveal that FITC-labeled tecto-dendrimers penetrate the stratum corneum of human skin ex vivo and reconstructed human skin but do not cross the tight junction barrier.


Assuntos
Nanoestruturas , Imagem Óptica/métodos , Pele/diagnóstico por imagem , Junções Íntimas/metabolismo , Dendrímeros , Sistemas de Liberação de Medicamentos , Fluorescência , Corantes Fluorescentes , Humanos
13.
Nanoscale Res Lett ; 12(1): 64, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28116609

RESUMO

Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.

14.
Eur J Pharm Biopharm ; 116: 149-154, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28034807

RESUMO

Extrinsic (photo) aging accelerates chronologically aging in the skin due to cumulative UV irradiation. Despite recent insights into the molecular mechanisms of fibroblast aging, age-related changes of the skin barrier function have been understudied. In contrast, the constantly increasing subpopulation of aged patients causes a clinical need for effective and safe (dermatological) treatment. Herein, we reconstructed human epidermis from UVB-irradiated keratinocytes (UVB-RHE). UVB-irradiated keratinocytes show higher activity of senescence associated ß-galactosidase, less cell proliferation, and reduced viability. Higher amounts of ß-galactosidase are also detectable in UVB-RHE. Moreover, UVB-RHE release more interleukin-1α and -8 into the culture medium and present altered differentiation with a thinner stratum corneum compared to normal RHE. For the first time, the permeation of testosterone and caffeine through UVB-irradiated RHE indicate a clear influence of the UVB stress on the skin barrier function. Impaired barrier function was confirmed by the increased permeation of testosterone and caffeine as well as by the increased penetration of dendritic core-multishell nanocarriers into the constructs. Taken together, UVB-RHE emulate hallmarks of skin aging and might contribute to an improved non-clinical development of medicinal or cosmetic products.


Assuntos
Epiderme/fisiologia , Queratinócitos/fisiologia , Cafeína/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Portadores de Fármacos/administração & dosagem , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Interleucina-1alfa/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Nanopartículas/administração & dosagem , Permeabilidade , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Testosterona/administração & dosagem , Raios Ultravioleta , beta-Galactosidase/metabolismo
15.
Eur J Pharm Biopharm ; 116: 66-75, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27989766

RESUMO

Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.


Assuntos
Acrilonitrila/química , Materiais Biocompatíveis/química , Epiderme/metabolismo , Corantes Fluorescentes/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Pirrolidinonas/química , Acrilonitrila/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Química Farmacêutica/métodos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes/administração & dosagem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Queratinócitos/metabolismo , Oxazinas/administração & dosagem , Oxazinas/química , Tamanho da Partícula , Polímeros/administração & dosagem , Polímeros/química , Pirrolidinonas/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA