Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Cell ; 59(12): 1571-1592.e9, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626765

RESUMO

Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Retículo Endoplasmático , Endossomos , Lisossomos , Neurônios , Lisossomos/metabolismo , Animais , Endossomos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Retículo Endoplasmático/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neurônios/metabolismo , Colesterol/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Cálcio/metabolismo , Humanos , Fibroblastos/metabolismo , Transdução de Sinais , Proteólise
2.
Nat Commun ; 14(1): 2847, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225734

RESUMO

Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.


Assuntos
DNA Mitocondrial , Nucleotídeos , Mitocôndrias , Nucleotidiltransferases , Proteínas Amiloidogênicas , Cromogranina A , Fosfolipases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA