Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurol Sci ; 434: 120166, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35144237

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent neurodegenerative diseases, both without prevention or cure. The Mediterranean diet (MeDi) may be neuroprotective by modulating gut microbiota. We aimed to assess the effects of adherence to MeDi on the gut microbiota in relation to AD or PD risk. A search from inception to November 2020 was conducted in PubMed, CINAHL, EMBASE, Web of Science, Global Health, Biological Abstracts, and Grey Literature Report databases. Two searches were conducted: 1) (MeDi or Microbiota) and (PD or AD) and 2) MeDi and microbiota. Inclusion criteria for papers were specified prior to review. Of 4672 studies identified, 64 were eligible for inclusion. These studies were divided into five groups: MeDi and AD risk (n = 4), MeDi and PD risk (n = 2), MeDi and microbial composition or metabolomics (n = 21), AD and microbial composition or metabolomics (n = 7), and PD and microbial composition or metabolomics (n = 30). Adherence to the MeDi was associated with a lower risk of AD and PD development. Eight genera and two species of bacteria had an inverse relationship with MeDi and AD, and one family, eight genera and three species of bacteria had an inverse relationship with MeDi and PD. More studies are needed to investigate if MeDi, gut microbiota, and neurodegeneration are causally related.


Assuntos
Doença de Alzheimer , Dieta Mediterrânea , Microbioma Gastrointestinal , Doença de Parkinson , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/prevenção & controle , Humanos , Doença de Parkinson/epidemiologia , Risco
2.
J Neurotrauma ; 28(11): 2363-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21391808

RESUMO

Research on spinal cord injury (SCI) repair focuses on developing mechanisms to allow neurites to grow past an injury site. In this article, we observe that numerous divergent paths (i.e., spinal roots) are present along the spinal column, and hence guidance strategies must be devised to ensure that regrowing neurites reach viable targets. Therefore, we have engineered an in vitro micropatterned model in which cultured E7 dorsal root ganglia (DRG) explants may enter alternate pathways (?roots?) along a branching micropattern. Alongside this in vitro model, we have developed an in silico simulation that we validate by comparison with independent experiments. We find in both in silico and in vitro models that the probability of a neurite entering a given root decreases exponentially with respect to the number of roots away from the DRG; consequently, the likelihood of neurites reaching a distant root can be vanishingly small. This result represents a starting point for future strategies to optimize the likelihood that neurites will reach appropriate targets in the regenerating nervous system, and provides a new computational tool to evaluate the feasibility and expected success of neurite guidance in complex geometries.


Assuntos
Neuritos/fisiologia , Engenharia Tecidual/métodos , Animais , Embrião de Galinha , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Neuritos/ultraestrutura , Técnicas de Cultura de Órgãos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA