Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015071

RESUMO

To support complex cognition, neuronal circuits must integrate information across multiple temporal scales, ranging from milliseconds to decades. Neuronal timescales describe the duration over which activity within a network persists, posing a putative explanatory mechanism for how information might be integrated over multiple temporal scales. Little is known about how timescales develop in human neural circuits or other model systems, limiting insight into how the functional dynamics necessary for cognition emerge. In our work, we show that neuronal timescales develop in a non-linear fashion in both human cortical organoids and dissociated rat hippocampus cultures. We use spectral parameterization of spiking activity to extract an estimate of neuronal timescale that is unbiased by co-evolving oscillations. Cortical organoid timescales begin to increase around month 6 post-differentiation. We complement these findings with an analysis of timescales in rodent hippocampal dissociated cultures over development and see that timescales decrease from in vitro days 13-23 before stabilizing. We speculate that cortical organoid development over the duration studied here reflects an earlier stage of a generalized developmental timeline in contrast to the rodent hippocampal cultures, potentially accounting for differences in timescale developmental trajectories. The fluctuation of timescales might be an important developmental feature that reflects the changing complexity and information capacity in developing neuronal circuits.

2.
J Neurosci ; 41(5): 813-822, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33431633

RESUMO

The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Humanos , Lógica
3.
Neuroimage ; 260: 119438, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792291

RESUMO

Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.


Assuntos
Eletrocorticografia , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletrodos , Eletroencefalografia/métodos , Humanos
4.
Eur J Neurosci ; 55(11-12): 3502-3527, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34268825

RESUMO

Neural oscillations are ubiquitous across recording methodologies and species, broadly associated with cognitive tasks, and amenable to computational modelling that investigates neural circuit generating mechanisms and neural population dynamics. Because of this, neural oscillations offer an exciting potential opportunity for linking theory, physiology and mechanisms of cognition. However, despite their prevalence, there are many concerns-new and old-about how our analysis assumptions are violated by known properties of field potential data. For investigations of neural oscillations to be properly interpreted, and ultimately developed into mechanistic theories, it is necessary to carefully consider the underlying assumptions of the methods we employ. Here, we discuss seven methodological considerations for analysing neural oscillations. The considerations are to (1) verify the presence of oscillations, as they may be absent; (2) validate oscillation band definitions, to address variable peak frequencies; (3) account for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; measure and account for (4) temporal variability and (5) waveform shape of neural oscillations, which are often bursty and/or nonsinusoidal, potentially leading to spurious results; (6) separate spatially overlapping rhythms, which may interfere with each other; and (7) consider the required signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant examples, demonstrate potential errors of interpretation, and offer suggestions to address these issues. We primarily focus on univariate measures, such as power and phase estimates, though we discuss how these issues can propagate to multivariate measures. These considerations and recommendations offer a helpful guide for measuring and interpreting neural oscillations.


Assuntos
Cognição , Cognição/fisiologia , Simulação por Computador
5.
Mol Psychiatry ; 26(10): 5751-5765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467645

RESUMO

Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Camundongos , Redes Neurais de Computação , Neurônios
6.
PLoS Comput Biol ; 17(8): e1009298, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411096

RESUMO

In invasive electrophysiological recordings, a variety of neural oscillations can be detected across the cortex, with overlap in space and time. This overlap complicates measurement of neural oscillations using standard referencing schemes, like common average or bipolar referencing. Here, we illustrate the effects of spatial mixing on measuring neural oscillations in invasive electrophysiological recordings and demonstrate the benefits of using data-driven referencing schemes in order to improve measurement of neural oscillations. We discuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used to estimate data-driven spatial filters, a computationally fast method which specifically enhances signal-to-noise ratio for oscillations in a frequency band of interest. We show that application of these data-driven spatial filters has benefits for data exploration, investigation of temporal dynamics and assessment of peak frequencies of neural oscillations. We demonstrate multiple use cases, exploring between-participant variability in presence of oscillations, spatial spread and waveform shape of different rhythms as well as narrowband noise removal with the aid of spatial filters. We find high between-participant variability in the presence of neural oscillations, a large variation in spatial spread of individual rhythms and many non-sinusoidal rhythms across the cortex. Improved measurement of cortical rhythms will yield better conditions for establishing links between cortical activity and behavior, as well as bridging scales between the invasive intracranial measurements and noninvasive macroscale scalp measurements.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Razão Sinal-Ruído
7.
PLoS Comput Biol ; 17(9): e1008100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555020

RESUMO

Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.


Assuntos
Potenciais de Ação/fisiologia , Tentilhões/fisiologia , Córtex Motor/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino
8.
J Cogn Neurosci ; 32(9): 1813-1822, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32427069

RESUMO

Healthy aging is associated with a multitude of structural changes in the brain. These physical age-related changes are accompanied by increased variability in neural activity of all kinds, and this increased variability, collectively referred to as "neural noise," is argued to contribute to age-related cognitive decline. In this study, we examine the relationship between two particular types of neural noise in aging. We recorded scalp EEG from younger (20-30 years old) and older (60-70 years old) adults performing a spatial visual discrimination task. First, we used the 1/f-like exponent of the EEG power spectrum, a putative marker of neural noise, to assess baseline shifts toward a noisier state in aging. Next, we examined age-related decreases in the trial-by-trial consistency of visual stimulus processing. Finally, we examined to what extent these two age-related noise markers are related, hypothesizing that greater baseline noise would increase the variability of stimulus-evoked responses. We found that visual cortical baseline noise was higher in older adults, and the consistency of older adults' oscillatory alpha (8-12 Hz) phase responses to visual targets was also lower than that of younger adults. Crucially, older adults with the highest levels of baseline noise also had the least consistent alpha phase responses, whereas younger adults with more consistent phase responses achieved better behavioral performance. These results establish a link between tonic neural noise and stimulus-associated neural variability in aging. Moreover, they suggest that tonic age-related increases in baseline noise might diminish sensory processing and, as a result, subsequent cognitive performance.


Assuntos
Disfunção Cognitiva , Ruído , Adulto , Idoso , Envelhecimento , Encéfalo , Eletroencefalografia , Humanos , Pessoa de Meia-Idade , Ruído/efeitos adversos , Adulto Jovem
9.
J Neurophysiol ; 124(1): 168-177, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490710

RESUMO

Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be rather variable. Some oscillations are tonic and last for seconds or even minutes. Other oscillations appear as unstable bursts. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic and inhibitory. Why this diversity exists is not clear. We hypothesized Ca2+-dependent homeostasis could be important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under homeostasis, tonic AMPAergic oscillations actually decrease excitability and desynchronize firing. Tonic oscillations that are synaptically GABAergic-like those in real hippocampus-don't provoke a homeostatic response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response and so can preserve the pyramidal cell's natural dynamic range. Based on these results we speculate that homeostasis may explain why AMPAergic oscillations in cortex, and in hippocampus, often appear as bursts. Bursts do not interact with the slow homeostatic time constant and so retain their normal excitatory effect.NEW & NOTEWORTHY The intricate interplay of neuromodulators, like acetylcholine, with homeostasis is well known. The interplay between oscillatory modulation and homeostasis is not. We studied oscillatory modulation and homeostasis for the first time using a simplified model of hippocampus. We report a paradoxical result: Ca-mediated homeostasis causes AMPAergic oscillations to become effectively inhibitory. This result, along with other new observations, means homeostasis might be just as complex and important for oscillations as it is for other neuromodulators.


Assuntos
Cálcio/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Hipocampo/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Ritmo Teta/fisiologia
10.
Nat Methods ; 19(11): 1349-1350, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36203017
11.
J Neurophysiol ; 122(2): 849-861, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268801

RESUMO

Neural oscillations are widely studied using methods based on the Fourier transform, which models data as sums of sinusoids. This has successfully uncovered numerous links between oscillations and cognition or disease. However, neural data are nonsinusoidal, and these nonsinusoidal features are increasingly linked to a variety of behavioral and cognitive states, pathophysiology, and underlying neuronal circuit properties. We present a new analysis framework, one that is complementary to existing Fourier and Hilbert transform-based approaches, that quantifies oscillatory features in the time domain on a cycle-by-cycle basis. We have released this cycle-by-cycle analysis suite as "bycycle," a fully documented, open-source Python package with detailed tutorials and troubleshooting cases. This approach performs tests to assess whether an oscillation is present at any given moment and, if so, quantifies each oscillatory cycle by its amplitude, period, and waveform symmetry, the latter of which is missed with the use of conventional approaches. In a series of simulated event-related studies, we show how conventional Fourier and Hilbert transform approaches can conflate event-related changes in oscillation burst duration as increased oscillatory amplitude and as a change in the oscillation frequency, even though those features were unchanged in simulation. Our approach avoids these errors. Furthermore, we validate this approach in simulation and against experimental recordings of patients with Parkinson's disease, who are known to have nonsinusoidal beta (12-30 Hz) oscillations.NEW & NOTEWORTHY We introduce a fully documented, open-source Python package, bycycle, for analyzing neural oscillations on a cycle-by-cycle basis. This approach is complementary to traditional Fourier and Hilbert transform-based approaches but avoids specific pitfalls. First, bycycle confirms an oscillation is present, to avoid analyzing aperiodic, nonoscillatory data as oscillations. Next, it quantifies nonsinusoidal aspects of oscillations, increasingly linked to neural circuit physiology, behavioral states, and diseases. This approach is tested against simulated and real data.


Assuntos
Ondas Encefálicas/fisiologia , Potenciais Evocados/fisiologia , Neurofisiologia/métodos , Processamento de Sinais Assistido por Computador , Eletrocorticografia/métodos , Análise de Fourier , Humanos , Modelos Teóricos
12.
J Neurophysiol ; 122(6): 2427-2437, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619109

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by hyperactivity/impulsivity and inattentiveness. Efforts toward the development of a biologically based diagnostic test have identified differences in the EEG power spectrum; most consistently reported is an increased ratio of theta to beta power during resting state in those with the disorder, compared with controls. Current approaches calculate theta/beta ratio using fixed frequency bands, but the observed differences may be confounded by other relevant features of the power spectrum, including shifts in peak oscillation frequency and altered slope or offset of the aperiodic 1/f-like component of the power spectrum. In the present study, we quantify the spectral slope and offset, peak alpha frequency, and band-limited and band-ratio oscillatory power in the resting-state EEG of 3- to 7-yr-old children with and without ADHD. We found that medication-naive children with ADHD had higher alpha power, greater offsets, and steeper slopes compared with typically developing children. Children with ADHD who were treated with stimulants had comparable slopes and offsets to the typically developing group despite a 24-h medication-washout period. We further show that spectral slope correlates with traditional measures of theta/beta ratio, suggesting the utility of slope as a neural marker over and above traditional approaches. Taken with past research demonstrating that spectral slope is associated with executive functioning and excitatory/inhibitory balance, these results suggest that altered slope of the power spectrum may reflect pathology in ADHD.NEW & NOTEWORTHY This article highlights the clinical utility of comprehensively quantifying features of the EEG power spectrum. Using this approach, we identify, for the first time, differences in the aperiodic components of the EEG power spectrum in children with attention-deficit/hyperactivity disorder (ADHD) and provide evidence that spectral slope is a robust indictor of an increase in low- relative to high-frequency power in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Ritmo beta/fisiologia , Estimulantes do Sistema Nervoso Central/farmacologia , Eletroencefalografia , Ritmo Teta/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Estudos Longitudinais , Masculino
13.
J Neurophysiol ; 122(3): 1023-1035, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314668

RESUMO

Subcallosal cingulate cortex deep brain stimulation (SCC-DBS) is an experimental therapy for treatment-resistant depression (TRD). Refinement and optimization of SCC-DBS will benefit from increased study of SCC electrophysiology in context of ongoing high-frequency SCC-DBS therapy. The study objective was a 7-mo observation of frequency-domain 1/f slope in off-stimulation local field potentials (SCC-LFPs) alongside standardized measurements of depression severity in 4 patients undergoing SCC-DBS. SCC was implanted bilaterally with a combined neurostimulation-LFP recording system. Following a 1-mo off-stimulation postoperative phase with multiple daily recordings, patients received bilateral SCC-DBS therapy (130 Hz, 90 µs) and weekly resting-state SCC-LFP recordings over a 6-mo treatment phase. 1/f slopes for each time point were estimated via linear regression of log-transformed Welch periodograms. General linear mixed-effects models were constructed to estimate pretreatment sources of 1/f slope variance, and 95% bootstrap confidence intervals were constructed to estimate treatment phase 1/f slope association with treatment response (50% decrease in preimplantation symptom severity). Results show the time of recording was a prominent source of pretreatment 1/f slope variance bilaterally, with increased 1/f slope magnitude observed during night hours (2300-0659). Increase in right 1/f slope was observed in the setting of treatment response, with bootstrap analysis supporting this observation in 3 of 4 subjects. We conclude that 1/f slope can be measured longitudinally in a combined SCC-DBS/LFP recording system and likely conforms to known 1/f circadian variability. The preliminary evidence of 1/f slope increase during treatment response suggests a potential utility as a candidate biomarker for ongoing development of adaptive TRD-neuromodulation strategies.NEW & NOTEWORTHY In four patients with treatment-resistant depression undergoing therapeutic deep brain stimulation (DBS), we present the first longitudinal observations of local field potentials (LFP) from the subcallosal cingulate region outside the postoperative period. Specifically, our results demonstrate that frequency-domain 1/f activity is measurable in a combined DBS-LFP recording system and that right hemisphere recordings appear sensitive to mood state, thus suggesting a potential readout suitable for consideration in ongoing efforts to develop adaptive DBS delivery systems.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Resistente a Tratamento/terapia , Fenômenos Eletrofisiológicos , Giro do Cíngulo , Avaliação de Processos em Cuidados de Saúde , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
14.
J Neurosci ; 37(18): 4830-4840, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28416595

RESUMO

Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13-30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinson's disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling (r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics.SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an oversynchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we show that the waveform shape of beta (13-30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communication may be made from the temporal dynamics of oscillatory waveform shape.


Assuntos
Ritmo beta , Relógios Biológicos , Sincronização Cortical , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Idoso , Mapeamento Encefálico/métodos , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos
15.
J Cogn Neurosci ; 29(9): 1483-1497, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28654361

RESUMO

Daily experiences demand both focused and broad allocation of attention for us to interact efficiently with our complex environments. Many types of attention have shown age-related decline, although there is also evidence that such deficits may be remediated with cognitive training. However, spatial attention abilities have shown inconsistent age-related differences, and the extent of potential enhancement of these abilities remains unknown. Here, we assessed spatial attention in both healthy younger and older adults and trained this ability in both age groups for 5 hr over the course of 2 weeks using a custom-made, computerized mobile training application. We compared training-related gains on a spatial attention assessment and spatial working memory task to age-matched controls who engaged in expectancy-matched, active placebo computerized training. Age-related declines in spatial attention abilities were observed regardless of task difficulty. Spatial attention training led to improved focused and distributed attention abilities as well as improved spatial working memory in both younger and older participants. No such improvements were observed in either of the age-matched control groups. Note that these findings were not a function of improvements in simple response time, as basic motoric function did not change after training. Furthermore, when using change in simple response time as a covariate, all findings remained significant. These results suggest that spatial attention training can lead to enhancements in spatial working memory regardless of age.


Assuntos
Envelhecimento , Atenção/fisiologia , Cognição/fisiologia , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Percepção Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Estudos de Casos e Controles , Sinais (Psicologia) , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação
16.
J Cogn Neurosci ; 29(7): 1302-1310, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28294717

RESUMO

Our attentional focus is constantly shifting: In one moment, our attention may be intently concentrated on a specific spot, whereas in another moment we might spread our attention more broadly. Although much is known about the mechanisms by which we shift our visual attention from place to place, relatively little is known about how we shift the aperture of attention from more narrowly to more broadly focused. Here we introduce a novel attentional distribution task to examine the neural mechanisms underlying this process. In this task, participants are presented with an informative cue that indicates the location of an upcoming target. This cue can be perfectly predictive of the exact target location, or it can indicate-with varying degrees of certainty-approximately where the target might appear. This cue is followed by a preparatory period in which there is nothing on the screen except a central fixation cross. Using scalp EEG, we examined neural activity during this preparatory period. We find that, with decreasing certainty regarding the precise location of the impending target, participant RTs increased whereas target identification accuracy decreased. Additionally, the multivariate pattern of preparatory period visual cortical alpha (8-12 Hz) activity encoded attentional distribution. This alpha encoding was predictive of behavioral accuracy and RT nearly 1 sec later. These results offer insight into the neural mechanisms underlying how we use information to guide our attentional distribution and how that influences behavior.


Assuntos
Antecipação Psicológica/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Percepção Espacial/fisiologia , Adulto , Eletroencefalografia , Humanos , Testes Neuropsicológicos , Tempo de Reação , Adulto Jovem
17.
Neuroimage ; 158: 70-78, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28676297

RESUMO

Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). Fluctuations in E:I balance have been shown to influence neural computation, working memory, and information flow, while more drastic shifts and aberrant E:I patterns are implicated in numerous neurological and psychiatric disorders. Current methods for measuring E:I dynamics require invasive procedures that are difficult to perform in behaving animals, and nearly impossible in humans. This has limited the ability to examine the full impact that E:I shifts have in cognition and disease. In this study, we develop a computational model to show that E:I changes can be estimated from the power law exponent (slope) of the electrophysiological power spectrum. Predictions from the model are validated in published data from two species (rats and macaques). We find that reducing E:I ratio via the administration of general anesthetic in macaques results in steeper power spectra, tracking conscious state over time. This causal result is supported by inference from known anatomical E:I changes across the depth of rat hippocampus, as well as oscillatory theta-modulated dynamic shifts in E:I. Our results provide evidence that E:I ratio may be inferred from electrophysiological recordings at many spatial scales, ranging from the local field potential to surface electrocorticography. This simple method for estimating E:I ratio-one that can be applied retrospectively to existing data-removes a major hurdle in understanding a currently difficult to measure, yet fundamental, aspect of neural computation.


Assuntos
Córtex Cerebral/fisiologia , Simulação por Computador , Modelos Neurológicos , Transmissão Sináptica/fisiologia , Animais , Eletrocorticografia , Macaca , Inibição Neural/fisiologia , Sinapses/fisiologia
18.
J Neurosci ; 35(38): 13257-65, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400953

RESUMO

Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in neural communication.


Assuntos
Envelhecimento , Encéfalo/fisiologia , Cognição/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Ruído , Estimulação Acústica , Adolescente , Adulto , Idoso , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Análise Espectral , Adulto Jovem
19.
Neuroimage ; 143: 196-203, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27577719

RESUMO

Alpha oscillations (7-14Hz) are modulated in response to visual temporal and spatial cues. However, the neural response to alerting cues is less explored, as is how this response is affected by healthy aging. Using scalp EEG, we examined how visual cortical alpha activity relates to working memory performance. Younger (20-30 years) and older (60-70 years) participants were presented with a visual alerting cue uninformative of the position or size of a lateralized working memory array. Older adults showed longer response times overall and reduced accuracy when memory load was high. Older adults had less consistent cue-evoked alpha phase resetting than younger adults, which predicted worse performance. Alpha phase prior to memory array presentation predicted response time, but the relationship between phase and response time was weaker in older adults. These results suggest that changes in alpha phase dynamics, especially prior to presentation of task-relevant stimuli, potentially contribute to age-related cognitive decline.


Assuntos
Envelhecimento/fisiologia , Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Sinais (Psicologia) , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Neuroimage ; 64: 416-24, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22986076

RESUMO

Phase/amplitude coupling (PAC) is emerging as an important electrophysiological measure of local and long-distance neuronal communication. Current techniques for calculating PAC provide a numerical index that represents an average value across an arbitrarily long time period. This requires researchers to rely on block design experiments and temporal concatenation at the cost of the sub-second temporal resolution afforded by electrophysiological recordings. Here we present a method for calculating event-related phase/amplitude coupling (ERPAC) designed to capture the temporal evolution of task-related changes in PAC across events or between distant brain regions that is applicable to human or animal electromagnetic recording.


Assuntos
Algoritmos , Relógios Biológicos , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia/diagnóstico , Modelos Neurológicos , Simulação por Computador , Epilepsia/fisiopatologia , Potenciais Evocados , Humanos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA