RESUMO
The capability of measuring specific neurophysiological and autonomic parameters plays a crucial role in the objective evaluation of a human's mental and emotional states. These human aspects are commonly known in the scientific literature to be involved in a wide range of processes, such as stress and arousal. These aspects represent a relevant factor especially in real and operational environments. Neurophysiological autonomic parameters, such as Electrodermal Activity (EDA) and Photoplethysmographic data (PPG), have been usually investigated through research-graded devices, therefore resulting in a high degree of invasiveness, which could negatively interfere with the monitored user's activity. For such a reason, in the last decade, recent consumer-grade wearable devices, usually designed for fitness-tracking purposes, are receiving increasing attention from the scientific community, and are characterized by a higher comfort, ease of use and, therefore, by a higher compatibility with daily-life environments. The present preliminary study was aimed at assessing the reliability of a consumer wearable device, i.e., the Fitbit Sense, with respect to a research-graded wearable, i.e., the Empatica E4 wristband, and a laboratory device, i.e., the Shimmer GSR3+. EDA and PPG data were collected among 12 participants while they performed multiple resting conditions. The results demonstrated that the EDA- and PPG-derived features computed through the wearable and research devices were positively and significantly correlated, while the reliability of the consumer device was significantly lower.
Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Monitores de Aptidão Física , Emoções , Sistema Nervoso AutônomoRESUMO
When assessing trainees' progresses during a driving training program, instructors can only rely on the evaluation of a trainee's explicit behavior and their performance, without having any insight about the training effects at a cognitive level. However, being able to drive does not imply knowing how to drive safely in a complex scenario such as the road traffic. Indeed, the latter point involves mental aspects, such as the ability to manage and allocate one's mental effort appropriately, which are difficult to assess objectively. In this scenario, this study investigates the validity of deploying an electroencephalographic neurometric of mental effort, obtained through a wearable electroencephalographic device, to improve the assessment of the trainee. The study engaged 22 young people, without or with limited driving experience. They were asked to drive along five different but similar urban routes, while their brain activity was recorded through electroencephalography. Moreover, driving performance, subjective and reaction times measures were collected for a multimodal analysis. In terms of subjective and performance measures, no driving improvement could be detected either through the driver's subjective measures or through their driving performance. On the other side, through the electroencephalographic neurometric of mental effort, it was possible to catch their improvement in terms of mental performance, with a decrease in experienced mental demand after three repetitions of the driving training tasks. These results were confirmed by the analysis of reaction times, that significantly improved from the third repetition as well. Therefore, being able to measure when a task is less mentally demanding, and so more automatic, allows to deduce the degree of users training, becoming capable of handling additional tasks and reacting to unexpected events.
Assuntos
Condução de Veículo , Dispositivos Eletrônicos Vestíveis , Humanos , Adolescente , Tempo de Reação , Eletroencefalografia/métodos , Acidentes de TrânsitoRESUMO
The sample size is a crucial concern in scientific research and even more in behavioural neurosciences, where besides the best practice it is not always possible to reach large experimental samples. In this study we investigated how the outcomes of research change in response to sample size reduction. Three indices computed during a task involving the observations of four videos were considered in the analysis, two related to the brain electroencephalographic (EEG) activity and one to autonomic physiological measures, i.e., heart rate and skin conductance. The modifications of these indices were investigated considering five subgroups of sample size (32, 28, 24, 20, 16), each subgroup consisting of 630 different combinations made by bootstrapping n (n = sample size) out of 36 subjects, with respect to the total population (i.e., 36 subjects). The correlation analysis, the mean squared error (MSE), and the standard deviation (STD) of the indexes were studied at the participant reduction and three factors of influence were considered in the analysis: the type of index, the task, and its duration (time length). The findings showed a significant decrease of the correlation associated to the participant reduction as well as a significant increase of MSE and STD (p < 0.05). A threshold of subjects for which the outcomes remained significant and comparable was pointed out. The effects were to some extents sensitive to all the investigated variables, but the main effect was due to the task length. Therefore, the minimum threshold of subjects for which the outcomes were comparable increased at the reduction of the spot duration.
Assuntos
Eletroencefalografia , Neurociências , Frequência Cardíaca , Humanos , Tamanho da AmostraRESUMO
Current telemedicine and remote healthcare applications foresee different interactions between the doctor and the patient relying on the use of commercial and medical wearable sensors and internet-based video conferencing platforms. Nevertheless, the existing applications necessarily require a contact between the patient and sensors for an objective evaluation of the patient's state. The proposed study explored an innovative video-based solution for monitoring neurophysiological parameters of potential patients and assessing their mental state. In particular, we investigated the possibility to estimate the heart rate (HR) and eye blinks rate (EBR) of participants while performing laboratory tasks by mean of facial-video analysis. The objectives of the study were focused on: (i) assessing the effectiveness of the proposed technique in estimating the HR and EBR by comparing them with laboratory sensor-based measures and (ii) assessing the capability of the video-based technique in discriminating between the participant's resting state (Nominal condition) and their active state (Non-nominal condition). The results demonstrated that the HR and EBR estimated through the facial-video technique or the laboratory equipment did not statistically differ (p > 0.1), and that these neurophysiological parameters allowed to discriminate between the Nominal and Non-nominal states (p < 0.02).
Assuntos
Frequência Cardíaca , Telemedicina , Gravação em Vídeo , Adulto , Piscadela , Feminino , Humanos , MasculinoRESUMO
The capability of monitoring user's performance represents a crucial aspect to improve safety and efficiency of several human-related activities. Human errors are indeed among the major causes of work-related accidents. Assessing human factors (HFs) could prevent these accidents through specific neurophysiological signals' evaluation but laboratory sensors require highly-specialized operators and imply a certain grade of invasiveness which could negatively interfere with the worker's activity. On the contrary, consumer wearables are characterized by their ease of use and their comfortability, other than being cheaper compared to laboratory technologies. Therefore, wearable sensors could represent an ideal substitute for laboratory technologies for a real-time assessment of human performances in ecological settings. The present study aimed at assessing the reliability and capability of consumer wearable devices (i.e., Empatica E4 and Muse 2) in discriminating specific mental states compared to laboratory equipment. The electrooculographic (EOG), electrodermal activity (EDA) and photoplethysmographic (PPG) signals were acquired from a group of 17 volunteers who took part to the experimental protocol in which different working scenarios were simulated to induce different levels of mental workload, stress, and emotional state. The results demonstrated that the parameters computed by the consumer wearable and laboratory sensors were positively and significantly correlated and exhibited the same evidences in terms of mental states discrimination.
Assuntos
Laboratórios , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca , Humanos , Reprodutibilidade dos Testes , Carga de TrabalhoRESUMO
The recent embedding of electroencephalographic (EEG) electrodes in wearable devices raises the problem of the quality of the data recorded in such uncontrolled environments. These recordings are often obtained with dry single-channel EEG devices, and may be contaminated by many sources of noise which can compromise the detection and characterization of the brain state studied. In this paper, we propose a classification-based approach to effectively quantify artefact contamination in EEG segments, and discriminate muscular artefacts. The performance of our method were assessed on different databases containing either artificially contaminated or real artefacts recorded with different type of sensors, including wet and dry EEG electrodes. Furthermore, the quality of unlabelled databases was evaluated. For all the studied databases, the proposed method is able to rapidly assess the quality of the EEG signals with an accuracy higher than 90%. The obtained performance suggests that our approach provide an efficient, fast and automated quality assessment of EEG signals from low-cost wearable devices typically composed of a dry single EEG channel.
Assuntos
Eletroencefalografia/métodos , Algoritmos , Artefatos , Encéfalo/fisiologia , Interfaces Cérebro-Computador , Eletrodos , Humanos , Dispositivos Eletrônicos VestíveisRESUMO
Introduction: In operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents. Methods: Thus, this study aimed to evaluate and validate two novel methods for assessing the degree of cooperation among professional pilots engaged in real-flight simulation tasks. In addition, the study aimed to assess the ability of the proposed metrics to differentiate between the expertise levels of operating crews based on their levels of cooperation. Eight crews were involved in the experiments, consisting of four crews of Unexperienced pilots and four crews of Experienced pilots. An expert trainer, simulating air traffic management communication on one side and acting as a subject matter expert on the other, provided external evaluations of the pilots' mental states during the simulation. The two novel approaches introduced in this study were formulated based on circular correlation and mutual information techniques. Results and discussion: The findings demonstrated the possibility of quantifying cooperation levels among pilots during realistic flight simulations. In addition, cooperation time is found to be significantly higher (p < 0.05) among Experienced pilots compared to Unexperienced ones. Furthermore, these preliminary results exhibited significant correlations (p < 0.05) with subjective and behavioral measures collected every 30 s during the task, confirming their reliability.
RESUMO
In the context of electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).Objective.The main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named multi-stage OCuLar artEfActs deNoising algorithm (o-CLEAN), suitable for online processing with minimal EEG channels.Approach.The research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: (a) the ocular artefacts correction performance (IN-Blink), and (b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).Main results.Results highlighted that (i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, (ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.Significance.The testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.
Assuntos
Algoritmos , Artefatos , Piscadela , Eletroencefalografia , Movimentos Oculares , Humanos , Eletroencefalografia/métodos , Piscadela/fisiologia , Movimentos Oculares/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Processamento de Sinais Assistido por ComputadorRESUMO
BACKGROUND: Despite substantial progress in investigating its psychophysical complexity, tinnitus remains a scientific and clinical enigma. The present study, through an ecological and multidisciplinary approach, aims to identify associations between electroencephalographic (EEG) and psycho-audiological variables. METHODS: EEG beta activity, often related to stress and anxiety, was acquired from 12 tinnitus patients (TIN group) and 7 controls (CONT group) during an audio cognitive task and at rest. We also investigated psychological (SCL-90-R; STAI-Y; BFI-10) and audiological (THI; TQ12-I; Hyperacusis) variables using non-parametric statistics to assess differences and relationships between and within groups. RESULTS: In the TIN group, frontal beta activity positively correlated with hyperacusis, parietal activity, and trait anxiety; the latter is also associated with depression in CONT. Significant differences in paranoid ideation and openness were found between groups. CONCLUSIONS: The connection between anxiety trait, beta activity in the fronto-parietal cortices and hyperacusis provides insights into brain functioning in tinnitus patients, offering quantitative descriptions for clinicians and new multidisciplinary treatment hypotheses.
RESUMO
The drivers' distraction plays a crucial role in road safety as it is one of the main impacting causes of road accidents. The phenomenon of distraction encompasses both psychological and environmental factors and, therefore, addressing the complex interplay contributing to human distraction in automotive is crucial for developing technologies and interventions for improving road safety. In scientific literature, different works were proposed for the distraction characterization in automotive, but there is still the lack of a univocal measure to assess the degree of distraction, nor a gold-standard tool that allows to "detect" eventual events, road traffic, and additional driving tasks that might contribute to the drivers' distraction. Therefore, the present study aimed at developing an EEG-based "Distraction index" obtained by the combination of the driver's mental workload and attention neurometrics and investigating and validating its reliability by analyzing together subjective and behavioral measures. A total of 25 licensed drivers were involved in this study, where they had to drive in two different scenarios, i.e., City and Highway, while different secondary tasks were alternatively proposed in addition to the main one to modulate the driver's attentional demand. The statistical analysis demonstrated the reliability of the proposed EEG-based distraction index in identifying the drivers' distraction when driving along different roads and traffic conditions (all p < 0.001). More importantly, the proposed index was demonstrated to be reliable in identifying which are the most impacting additional driving tasks on the drivers' distraction (all p < 0.01).
RESUMO
Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms. Through detailed step-by-step instructions and comparative analysis, this tutorial equips researchers with the tools necessary to maintain the integrity of EEG data, ensuring accurate and reliable results in neurophysiological studies. The strategies discussed are particularly relevant for wearable EEG systems and real-time applications, reflecting the growing demand for robust and adaptable solutions in applied neuroscience.
RESUMO
Cochlear implants (CI) allow deaf patients to improve language perception and improving their emotional valence assessment. Electroencephalographic (EEG) measures were employed so far to improve CI programming reliability and to evaluate listening effort in auditory tasks, which are particularly useful in conditions when subjective evaluations are scarcely appliable or reliable. Unfortunately, the presence of CI on the scalp introduces an electrical artifact coupled to EEG signals that masks physiological features recorded by electrodes close to the site of implant. Currently, methods for CI artifact removal have been developed for very specific EEG montages or protocols, while others require many scalp electrodes. In this study, we propose a method based on the Multi-channel Wiener filter (MWF) to overcome those shortcomings. Nine children with unilateral CI and nine age-matched normal hearing children (control) participated in the study. EEG data were acquired on a relatively low number of electrodes (n = 16) during resting condition and during an auditory task. The obtained results obtained allowed to characterize CI artifact on the affected electrode and to significantly reduce, if not remove it through MWF filtering. Moreover, the results indicate, by comparing the two sample populations, that the EEG data loss is minimal in CI users after filtering, and that data maintain EEG physiological characteristics.
RESUMO
Background noise elicits listening effort. What else is tinnitus if not an endogenous background noise? From such reasoning, we hypothesized the occurrence of increased listening effort in tinnitus patients during listening tasks. Such a hypothesis was tested by investigating some indices of listening effort through electroencephalographic and skin conductance, particularly parietal and frontal alpha and electrodermal activity (EDA). Furthermore, tinnitus distress questionnaires (THI and TQ12-I) were employed. Parietal alpha values were positively correlated to TQ12-I scores, and both were negatively correlated to EDA; Pre-stimulus frontal alpha correlated with the THI score in our pilot study; finally, results showed a general trend of increased frontal alpha activity in the tinnitus group in comparison to the control group. Parietal alpha during the listening to stimuli, positively correlated to the TQ12-I, appears to reflect a higher listening effort in tinnitus patients and the perception of tinnitus symptoms. The negative correlation between both listening effort (parietal alpha) and tinnitus symptoms perception (TQ12-I scores) with EDA levels could be explained by a less responsive sympathetic nervous system to prepare the body to expend increased energy during the "fight or flight" response, due to pauperization of energy from tinnitus perception.
RESUMO
It has been demonstrated that odors could affect humans at the psychophysiological level. Significant research has been done on odor perception and physiological mechanisms; however, this research was mainly performed in highly controlled conditions in order to highlight the perceptive phenomena and the correlated physiological responses in the time frame of milliseconds. The present study explored how human physiological activity evolves in response to different odor conditions during an ecological olfactory experience on a broader time scale (from 1 to 90 s). Two odors, vanilla and menthol, together with a control condition (blank) were employed as stimuli. Electroencephalographic (EEG) activity in four frequency bands of interest, theta, alpha, low beta, and high beta, and the electrodermal activity (EDA) of the skin conductance level and response (SCL and SCR) were investigated at five time points taken during: (i) the first ten seconds of exposure (short-term analysis) and (ii) throughout the entire exposure to each odor (90 s, long-term analysis). The results revealed significant interactions between the odor conditions and the time periods in the short-term analysis for the overall frontal activity in the theta (p = 0.03), alpha (p = 0.005), and low beta (p = 0.0067) bands, the frontal midline activity in the alpha (p = 0.015) and low beta (p = 0.02) bands, and the SCR component (p = 0.024). For the long-term effects, instead, only one EEG parameter, frontal alpha asymmetry, was significantly sensitive to the considered dimensions (p = 0.037). In conclusion, the present research determined the physiological response to different odor conditions, also demonstrating the sensitivity of the employed parameters in characterizing the dynamic of such response during the time. As an exploratory study, this work points out the relevance of considering the effects of continuous exposure instead of short stimulation when evaluating the human olfactory experience, providing insights for future studies in the field.
RESUMO
Not all elements displayed in a YouTube in-stream video ad are attributable to the ad itself. Some of those are automatically introduced by the platform, such as the countdown timer and the time progress bar. In recent years, some authors started exploring the effects associated with the presence of such non-ad items, providing valuable findings. However, objective evaluation of viewers' visual attention is lacking in this context as well as emotional investigation. In addition, previous research showed how the manipulation of seemingly negligible details can yield dramatically different outcomes in the context of in-stream advertising. To extend knowledge, the authors explored the effects of the non-ad items' presence by employing eye-tracking and facial coding techniques in combination with self-reports in a between-subjects experimental design focusing on the YouTube 15-s, mid-roll, non-skippable in-stream ad format. Results showed that the ad format currently employed by YouTube performs worse than its equivalent without the non-ad items on all the investigated measures and than its equivalent in which the non-ad items' presence was experimentally reduced on facial coding disgust, self-reported disgust, ad irritation, and ad attitude. Managerial insights and challenges concerning the future of in-stream advertising and neuromarketing are highlighted.
RESUMO
Nowadays, fostered by technological progress and contextual circumstances such as the economic crisis and pandemic restrictions, remote education is experiencing growing deployment. However, this growth has generated widespread doubts about the actual effectiveness of remote/online learning compared to face-to-face education. The present study was aimed at comparing face-to-face and remote education through a multimodal neurophysiological approach. It involved forty students at a driving school, in a real classroom, experiencing both modalities. Wearable devices to measure brain, ocular, heart and sweating activities were employed in order to analyse the students' neurophysiological signals to obtain insights into the cognitive dimension. In particular, four parameters were considered: the Eye Blink Rate, the Heart Rate and its Variability and the Skin Conductance Level. In addition, the students filled out a questionnaire at the end to obtain an explicit measure of their learning performance. Data analysis showed higher cognitive activity, in terms of attention and mental engagement, in the in-presence setting compared to the remote modality. On the other hand, students in the remote class felt more stressed, particularly during the first part of the lesson. The analysis of questionnaires demonstrated worse performance for the remote group, thus suggesting a common "disengaging" behaviour when attending remote courses, thus undermining their effectiveness. In conclusion, neuroscientific tools could help to obtain insights into mental concerns, often "blind", such as decreasing attention and increasing stress, as well as their dynamics during the lesson itself, thus allowing the definition of proper countermeasures to emerging issues when introducing new practices into daily life.
RESUMO
Art experience is not solely the observation of artistic objects, but great relevance is also placed on the environment in which the art experience takes place, often in museums and galleries. Interestingly, in the last few years, the introduction of some forms of virtual reality (VR) in museum contexts has been increasing. This has solicited enormous research interest in investigating any eventual differences between looking at the same artifact either in a real context (e.g. a museum) and in VR. To address such a target, a neuroaesthetic study was performed in which electroencephalography (EEG) and autonomic signals (heart rate and skin conductance) were recorded during the observation of the Etruscan artifact "Sarcophagus of the Spouses", both in the museum and in a VR reproduction. Results from EEG analysis showed a higher level of the Workload Index during observation in the museum compared to VR (p = 0.04), while the Approach-Withdrawal Index highlighted increased levels during the observation in VR compared to the observation in the museum (p = 0.03). Concerning autonomic indices, the museum elicited a higher Emotional Index response than the VR (p = 0.03). Overall, preliminary results suggest a higher engagement potential of the museum compared to VR, although VR could also favour higher embodiment than the museum.
RESUMO
The human factor plays a key role in the automotive field since most accidents are due to drivers' unsafe and risky behaviors. The industry is now pursuing two main solutions to deal with this concern: in the short term, there is the development of systems monitoring drivers' psychophysical states, such as inattention and fatigue, and in the medium-long term, there is the development of fully autonomous driving. This second solution is promoted by recent technological progress in terms of Artificial Intelligence and sensing systems aimed at making vehicles more and more accurately aware of their "surroundings." However, even with an autonomous vehicle, the driver should be able to take control of the vehicle when needed, especially during the current transition from the lower (SAE < 3) to the highest level (SAE = 5) of autonomous driving. In this scenario, the vehicle has to be aware not only of its "surroundings" but also of the driver's psychophysical state, i.e., a user-centered Artificial Intelligence. The neurophysiological approach is one the most effective in detecting improper mental states. This is particularly true if considering that the more automatic the driving will be, the less available the vehicular data related to the driver's driving style. The present study aimed at employing a holistic approach, considering simultaneously several neurophysiological parameters, in particular, electroencephalographic, electrooculographic, photopletismographic, and electrodermal activity data to assess the driver's mental fatigue in real time and to detect the onset of fatigue increasing. This would ideally work as an information/trigger channel for the vehicle AI. In all, 26 professional drivers were engaged in a 45-min-lasting realistic driving task in simulated conditions, during which the previously listed biosignals were recorded. Behavioral (reaction times) and subjective measures were also collected to validate the experimental design and to support the neurophysiological results discussion. Results showed that the most sensitive and timely parameters were those related to brain activity. To a lesser extent, those related to ocular parameters were also sensitive to the onset of mental fatigue, but with a delayed effect. The other investigated parameters did not significantly change during the experimental session.
RESUMO
Despite the plethora of studies investigating listening effort and the amount of research concerning music perception by cochlear implant (CI) users, the investigation of the influence of background noise on music processing has never been performed. Given the typical speech in noise recognition task for the listening effort assessment, the aim of the present study was to investigate the listening effort during an emotional categorization task on musical pieces with different levels of background noise. The listening effort was investigated, in addition to participants' ratings and performances, using EEG features known to be involved in such phenomenon, that is alpha activity in parietal areas and in the left inferior frontal gyrus (IFG), that includes the Broca's area. Results showed that CI users performed worse than normal hearing (NH) controls in the recognition of the emotional content of the stimuli. Furthermore, when considering the alpha activity corresponding to the listening to signal to noise ratio (SNR) 5 and SNR10 conditions subtracted of the activity while listening to the Quiet condition-ideally removing the emotional content of the music and isolating the difficulty level due to the SNRs- CI users reported higher levels of activity in the parietal alpha and in the homologous of the left IFG in the right hemisphere (F8 EEG channel), in comparison to NH. Finally, a novel suggestion of a particular sensitivity of F8 for SNR-related listening effort in music was provided.
Assuntos
Implantes Cocleares , Música , Percepção da Fala , Humanos , Esforço de Escuta , Audição , Eletroencefalografia/métodosRESUMO
The current industrial environment relies heavily on maritime transportation. Despite the continuous technological advances for the development of innovative safety software and hardware systems, there is a consistent gap in the scientific literature regarding the objective evaluation of the performance of maritime operators. The human factor is profoundly affected by changes in human performance or psychological state. The difficulty lies in the fact that the technology, tools, and protocols for investigating human performance are not fully mature or suitable for experimental investigation. The present research aims to integrate these two concepts by (i) objectively characterizing the psychological state of mariners, i.e., mental workload, stress, and attention, through their electroencephalographic (EEG) signal analysis, and (ii) validating an innovative safety framework countermeasure, defined as Human Risk-Informed Design (HURID), through the aforementioned neurophysiological approach. The proposed study involved 26 mariners within a high-fidelity bridge simulator while encountering collision risk in congested waters with and without the HURID. Subjective, behavioral, and neurophysiological data, i.e., EEG, were collected throughout the experimental activities. The results showed that the participants experienced a statistically significant higher mental workload and stress while performing the maritime activities without the HURID, while their attention level was statistically lower compared to the condition in which they performed the experiments with the HURID (all p < 0.05). Therefore, the presented study confirmed the effectiveness of the HURID during maritime operations in critical scenarios and led the way to extend the neurophysiological evaluation of the HFs of maritime operators during the performance of critical and/or standard shipboard tasks.