Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396760

RESUMO

Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in primary lymphocytes and Epstein-Barr-virus (EBV)-immortalized lymphoblasts compared to healthy donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1). Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical phenotype of our patient.


Assuntos
Medula Óssea , Mitocôndrias , Neutropenia , Fatores de Processamento de Serina-Arginina , Criança , Humanos , Processamento Alternativo , Medula Óssea/metabolismo , Medula Óssea/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas/metabolismo , Precursores de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
2.
Clin Immunol ; 231: 108837, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455097

RESUMO

RAS-associated autoimmune leukoproliferative disease (RALD) is a rare immune dysregulation syndrome caused by somatic gain-of-function mutations of either NRAS or KRAS gene in hematopoietic cells. We describe a 27-year-old patient presenting at 5 months of age with recurrent infections and generalized lymphadenopathy who developed a complex multi-organ autoimmune syndrome with hypogammaglobulinemia, partially controlled with oral steroids, hydroxichloroquine, mofetil mycophenolate and IVIG prophylaxis. Activation of type I interferon pathway was observed in peripheral blood. Since 18 years of age, the patient developed regenerative nodular hyperplasia of the liver evolving into hepatopulmonary syndrome. Whole exome sequencing analysis of the peripheral blood DNA showed the NRAS p.Gly13Asp mutation validated as somatic. Our report highlights the possibility of detecting somatic NRAS gene mutations in patients with inflammatory immune dysregulation and type I interferon activation.


Assuntos
Síndrome Linfoproliferativa Autoimune/genética , Síndrome Linfoproliferativa Autoimune/imunologia , GTP Fosfo-Hidrolases/genética , Interferon Tipo I/imunologia , Hepatopatias/genética , Proteínas de Membrana/genética , Adulto , Síndrome Linfoproliferativa Autoimune/complicações , Humanos , Hepatopatias/imunologia , Mutação
3.
J Pediatr Hematol Oncol ; 40(5): e323-e326, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29176466

RESUMO

A severe course of infectious mononucleosis should always lead up to the suspicion of a primary immunodeficiency. We describe the case of a boy with severe mononucleosis accompanied by the development of hemophagocytic lymphohistiocytosis and lymphoma. By whole exome sequencing, we identified a mutation of uncertain significance in CTPS2, a gene closely related to CTPS1, which is involved in a primary immune deficiency with susceptibility to herpesviruses. We discuss the challenge of a correct interpretation of data from whole exome sequencing, questioning whether the CTPS2 variant found in our patient is just an incidental finding or a mutation with variable penetrance.


Assuntos
Exoma , Herpesvirus Humano 4/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mononucleose Infecciosa , Linfoma , Mutação , Adolescente , Humanos , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/virologia , Linfoma/genética , Linfoma/virologia , Masculino
4.
Hum Mol Genet ; 24(19): 5655-64, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188009

RESUMO

Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.


Assuntos
Caderinas/genética , Estudo de Associação Genômica Ampla/métodos , Audição/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/genética , Animais , Ásia Central , Caderinas/metabolismo , Surdez/genética , Predisposição Genética para Doença , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Humanos , Itália , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Protocaderinas , Análise de Sequência de RNA/métodos
5.
Hum Hered ; 79(1): 14-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720536

RESUMO

OBJECTIVE: The aim of this study is to evaluate the fraction of putatively deleterious variants within genomic runs of homozygosity (ROH) regions in an inbred and selected cohort of Qatari individuals. METHODS: High-density SNP array analysis was performed in 36 individuals, and for 14 of them whole-exome sequencing (WES) was also carried out. RESULTS: In all individuals, regions characterized by a high (hotspot) or low (coldspot) degree of homozygosity in all the analysed individuals were mapped, and the most frequent hotspot regions were selected. WES data were exploited to identify the single nucleotide variations (SNVs) harboured by genes located within both regions in each individual. Evolutionary conservation-based algorithms were employed to predict the potential deleteriousness of SNVs. The amount of in silico predicted deleterious SNVs was significantly different (p < 0.05) between homozygosity hotspot and coldspot regions. CONCLUSION: Genes located within ROH hotspot regions contain a significant burden of predicted putatively deleterious variants compared to genes located outside these regions, suggesting inbreeding as a possible mechanism allowing an enrichment of putatively deleterious variants at the homozygous state.


Assuntos
Consanguinidade , Homozigoto , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Humanos , Mutação , Catar
6.
Genet Med ; 17(5): 396-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25232855

RESUMO

PURPOSE: The harmful effects of inbreeding are well known by geneticists, and several studies have already reported cases of intellectual disability caused by recessive variants in consanguineous families. Nevertheless, the effects of inbreeding on the degree of intellectual disability are still poorly investigated. Here, we present a detailed analysis of the homozygosity regions in a cohort of 612 patients with intellectual disabilities of different degrees. METHODS: We investigated (i) the runs of homozygosity distribution between syndromic and nonsyndromic ID (ii) the effect of runs of homozygosity on the ID degree, using the intelligence quotient score. RESULTS: Our data revealed no significant differences in the first analysis; instead we detected significantly larger runs of homozygosity stretches in severe ID compared to nonsevere ID cases (P = 0.007), together with an increase of the percentage of genome covered by runs of homozygosity (P = 0.03). CONCLUSION: In accord with the recent findings regarding autism and other neurological disorders, this study reveals the important role of autosomal recessive variants in intellectual disability. The amount of homozygosity seems to modulate the degree of cognitive impairment despite the intellectual disability cause.


Assuntos
Transtornos Cognitivos/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Transtornos Cognitivos/diagnóstico , Consanguinidade , Feminino , Genes Recessivos , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Razão de Chances , Fenótipo
7.
Hum Hered ; 77(1-4): 175-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25060281

RESUMO

Qatar is a sovereign state located on the Eastern coast of the Arabian Peninsula in the Persian Gulf. Its native population consists of 3 major subgroups: people of Arabian origin or Bedouins, those from an Eastern or Persian ancestry and individuals with African admixture. Historically, all types of consanguineous marriages have been and still are common in the Qatari population, particularly among first and double-first cousins. Thus, there is a higher risk for most inherited diseases including hereditary hearing loss (HHL). In particular, a hearing loss prevalence of 5.2% has been reported in Qatar, with parental consanguinity being more common among affected individuals as compared with unaffected ones. Our recent molecular results confirm a high homogeneity and level of inbreeding in Qatari HHL patients. Among all HHL genes, GJB2, the major player worldwide, accounts for a minor proportion of cases and at least 3 additional genes have been found to be mutated in Qatari patients. Interestingly, one gene, BDP1, has been described to cause HHL only in this country. These results point towards an unexpected level of genetic heterogeneity despite the high level of inbreeding. This review provides an up-to-date picture of HHL in Qatar and of the impact of consanguinity on this disease.


Assuntos
Consanguinidade , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Padrões de Herança/genética , Conexina 26 , Conexinas , Homozigoto , Humanos , Linhagem , Prevalência , Análise de Componente Principal , Catar/epidemiologia , Fator de Transcrição TFIIIB/genética
8.
BMC Genet ; 15: 131, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25476266

RESUMO

BACKGROUND: The ancient Silk Road has been a trading route between Europe and Central Asia from the 2(nd) century BCE to the 15(th) century CE. While most populations on this route have been characterized, the genetic background of others remains poorly understood, and little is known about past migration patterns. The scientific expedition "Marco Polo" has recently collected genetic and phenotypic data in six regions (Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Tajikistan) along the Silk Road to study the genetics of a number of phenotypes. RESULTS: We characterized the genetic structure of these populations within a worldwide context. We observed a West-East subdivision albeit the existence of a genetic component shared within Central Asia and nearby populations from Europe and Near East. We observed a contribution of up to 50% from Europe and Asia to most of the populations that have been analyzed. The contribution from Asia dates back to ~25 generations and is limited to the Eastern Silk Road. Time and direction of this contribution are consistent with the Mongolian expansion era. CONCLUSIONS: We clarified the genetic structure of six populations from Central Asia and suggested a complex pattern of gene flow among them. We provided a map of migration events in time and space and we quantified exchanges among populations. Altogether these novel findings will support the future studies aimed at understanding the genetics of the phenotypes that have been collected during the Marco Polo campaign, they will provide insights into the history of these populations, and they will be useful to reconstruct the developments and events that have shaped modern Eurasians genomes.


Assuntos
Fluxo Gênico , Migração Humana , Povo Asiático/genética , Comunidade dos Estados Independentes , Homozigoto , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Análise de Sequência de DNA , População Branca/genética
9.
Am J Med Genet A ; 164A(1): 170-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24307393

RESUMO

The identification of causes underlying intellectual disability (ID) is one of the most demanding challenges for clinical Geneticists and Researchers. Despite molecular diagnostics improvements, the vast majority of patients still remain without genetic diagnosis. Here, we report the results obtained using Whole Exome and Target Sequencing on nine patients affected by isolated ID without pathological copy number variations, which were accurately selected from an initial cohort of 236 patients. Three patterns of inheritance were used to search for: (1) de novo, (2) X-linked, and (3) autosomal recessive variants. In three of the nine proband-parent trios analyzed, we identified and validated two de novo and one X-linked potentially causative mutations located in three ID-related genes. We proposed three genes as ID candidate, carrying one de novo and three X-linked mutations. Overall, this systematic proband-parent trio approach using next generation sequencing could explain a consistent percentage of patients with isolated ID, thus increasing our knowledge on the molecular bases of this disease and opening new perspectives for a better diagnosis, counseling, and treatment.


Assuntos
Deficiência Intelectual/genética , Biologia Computacional , Exoma , Feminino , Genes Recessivos , Genes Ligados ao Cromossomo X , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/diagnóstico , Cariótipo , Masculino , Mutação , Fluxo de Trabalho
10.
Neuron ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38810652

RESUMO

Down syndrome (DS) is the most common genetic cause of cognitive disability. However, it is largely unclear how triplication of a small gene subset may impinge on diverse aspects of DS brain physiopathology. Here, we took a multi-omic approach and simultaneously analyzed by RNA-seq and proteomics the expression signatures of two diverse regions of human postmortem DS brains. We found that the overexpression of triplicated genes triggered global expression dysregulation, differentially affecting transcripts, miRNAs, and proteins involved in both known and novel biological candidate pathways. Among the latter, we observed an alteration in RNA splicing, specifically modulating the expression of genes involved in cytoskeleton and axonal dynamics in DS brains. Accordingly, we found an alteration in axonal polarization in neurons from DS human iPSCs and mice. Thus, our study provides an integrated multilayer expression database capable of identifying new potential targets to aid in designing future clinical interventions for DS.

11.
Epileptic Disord ; 25(6): 874-879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37518898

RESUMO

The MYT1L gene plays a critical role in brain development, promoting the differentiation and proliferation of cells, important for the formation of brain connections. MYT1L is also involved in regulating the development of the hypothalamus, which is a crucial actor in weight regulation. Genetic variants in the MYT1L are associated with a range of developmental disorders, including intellectual disability, autism spectrum disorder, facial dysmorphisms, and epilepsy. The specific role of MYT1L in epilepsy remains elusive and no patients with developmental and epileptic encephalopathy (DEE) have been described so far. In this study, we report a patient with DEE presenting with severe refractory epilepsy, obesity, and behavioral abnormalities. Exome sequencing led to the identification of the heterozygous variant NM_001303052.2: c.1717G>A, p.(Gly573Arg) (chr2-1910340-C-T; GRCh38.p14) in the MYT1L gene. This variant was found to be inherited by the father, who was a mosaic and did not suffer from any neuropsychiatric disorders. Our observations expand the molecular and phenotype spectrum of MYT1L-related disorders, suggesting that affected individuals may present with severe epileptic phenotype leading to neurocognitive deterioration. Furthermore, we show that mosaic parents may not display the disease phenotype, with relevant implications for genetic counseling.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Humanos , Masculino , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia/complicações , Encéfalo , Fenótipo , Pai , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética
12.
Nat Commun ; 14(1): 4974, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591988

RESUMO

Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , RNA Longo não Codificante , Animais , Camundongos , Elementos Nucleotídeos Longos e Dispersos/genética , Diferenciação Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , RNA Longo não Codificante/genética
13.
Mol Syndromol ; 14(5): 433-438, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915395

RESUMO

Introduction: Nowadays, whole-exome sequencing (WES) analysis is an essential part in the diagnostic pathway of individuals with complex phenotypes when routine exams, such as array-CGH and gene panels, have proved inconclusive. However, data on the diagnostic rate of WES analysis in adult individuals, negative to first-tier tests, are lacking. This is because initiatives with the aim of diagnosing rare diseases focus mainly on pediatric unsolved cases. Case Presentation: We hereby present a 45-year-old woman with severe intellectual disability, previous psychomotor developmental delay, behavioral disorders, stereotypies, nonconvulsive epilepsy, and dysmorphisms. The proband first came to our attention when she was 4 years old (in 1982); since then, she has undergone several clinical and instrumental assessments, without reaching a genetic diagnosis. At last, through WES analysis, a novel de novo variant in SYNGAP1 was found. The clinical characteristics associated with SYNGAP1 are similar to those presented by the proband. Conclusion: The variant is predicted to be deleterious and is most probably the cause of the proband's phenotype. The perseverance of the clinicians and the family allowed us to reach a diagnosis in a woman with a more than 30-year history of clinical evaluations, instrumental assessments, and genetic tests. This diagnosis was of significant relevance in genetic counseling for family members and the proband herself.

14.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980803

RESUMO

Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder caused by mutations in NF1 gene, coding for neurofibromin 1. NF1 can be associated with Moyamoya disease (MMD), and this association, typical of paediatric patients, is referred to as Moyamoya syndrome (MMS). MMD is a cerebral arteriopathy characterized by the occlusion of intracranial arteries and collateral vessel formation, which increase the risk of ischemic and hemorrhagic events. RNF213 gene mutations have been associated with MMD, so we investigated whether rare variants of RNF213 could act as genetic modifiers of MMS phenotype in a pediatric cohort of 20 MMS children, 25 children affected by isolated MMD and 47 affected only by isolated NF1. By next-generation re-sequencing (NGS) of patients' DNA and gene burden tests, we found that RNF213 seems to play a role only for MMD occurrence, while it does not appear to be involved in the increased risk of Moyamoya for MMS patients. We postulated that the loss of neurofibromin 1 can be enough for the excessive proliferation of vascular smooth muscle cells, causing Moyamoya arteriopathy associated with NF1. Further studies will be crucial to support these findings and to elucidate the possible role of other genes, enhancing our knowledge about pathogenesis and treatment of MMS.

15.
Mol Vis ; 17: 1662-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738395

RESUMO

PURPOSE: Usher syndrome is an autosomal recessive disorder characterized by hearing and vision loss. Usher syndrome is divided into three clinical subclasses (type 1, type 2, and type 3), which differ in terms of the severity and progression of hearing loss and the presence or absence of vestibular symptoms. Usher syndrome is defined by significant genetic heterogeneity, with at least 12 distinct loci described and 9 genes identified. This study aims to provide a molecular epidemiology report of Usher syndrome in Italy. METHODS: Molecular data have been obtained on 75 unrelated Italian patients using the most up-to date technology available for the screening of Usher syndrome gene mutations, i.e., the genotyping microarray developed by Asper Biotech (Tartu, Estonia), which simultaneously investigates 612 different marker positions using the well established arrayed primer extension methodology (APEX). RESULTS: Using this method, we found that 12% of cases (9 out of 75) harbored homozygous or compound heterozygous mutations in the gene positions analyzed, whereas 20% (15 out of 75) of the patients were characterized by the presence of only one mutated allele based on the positions analyzed. One patient was found to be compound heterozygous for mutations in two different genes and this represents an example of possible digenic inheritance in Usher syndrome. A total of 66.6% of cases (50 out of 75) were found to be completely negative for the presence of Usher syndrome gene mutations in the detected positions. Mutations detected by the array were confirmed by direct sequencing. CONCLUSIONS: These findings highlight the efficacy of the APEX-based genotyping approach in the molecular assessment of Usher patients, suggesting the presence of alleles not yet identified and/or the involvement of additional putative genes that may account for the pathogenesis of Usher syndrome.


Assuntos
Perda Auditiva/genética , Epidemiologia Molecular/métodos , Síndromes de Usher/genética , Idade de Início , Alelos , Análise Mutacional de DNA , Heterogeneidade Genética , Genótipo , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Heterozigoto , Homozigoto , Humanos , Itália , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Índice de Gravidade de Doença , Síndromes de Usher/epidemiologia , Síndromes de Usher/patologia
16.
Front Genet ; 12: 625564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679889

RESUMO

Autism Spectrum Disorder (ASD) refers to a broad range of conditions characterized by difficulties in communication, social interaction and behavior, and may be accompanied by other medical or psychiatric conditions. Patients with ASD and comorbidities are often difficult to diagnose because of the tendency to consider the multiple symptoms as the presentation of a complicated syndromic form. This view influences variant filtering which might ignore causative variants for specific clinical features shown by the patient. Here we report on a male child diagnosed with ASD, showing cognitive and motor impairments, stereotypies, hyperactivity, sleep, and gastrointestinal disturbances. The analysis of whole exome sequencing (WES) data with bioinformatic tools for oligogenic diseases helped us to identify two major previously unreported pathogenetic variants: a maternally inherited missense variant (p.R4122H) in HUWE1, an ubiquitin protein ligase associated to X-linked intellectual disability and ASD; and a de novo stop variant (p.Q259X) in TPH2, encoding the tryptophan hydroxylase 2 enzyme involved in serotonin synthesis and associated with susceptibility to attention deficit-hyperactivity disorder (ADHD). TPH2, expressed in central and peripheral nervous tissues, modulates various physiological functions, including gut motility and sleep. To the best of our knowledge, this is the first case presenting with ASD, cognitive impairment, sleep, and gastrointestinal disturbances linked to both HUWE1 and TPH2 genes. Our findings could contribute to the existing knowledge on clinical and genetic diagnosis of patients with ASD presentation with comorbidities.

18.
Eur Biophys J ; 39(6): 979-86, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19455320

RESUMO

In this study we analyzed the surface properties of different silicon-based materials used for micro-electro-mechanical systems (MEMS) production, such as thermally grown silicon oxide, plasma-enhanced chemical vapor deposition (PECVD)-treated silicon oxide, reactive-ion etch (RIE)-treated silicon oxide, and Pyrex. Substrates were characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to define the surface chemical and morphological properties, and by fluorescence microscopy to directly assess the absorption of the different polymerase chain reaction (PCR) components. By using microchips fabricated with the same materials we investigated their compatibility with PCR reactions, exploiting the use of different enzymes and reagents or proper surface treatments. We established the best conditions for DNA amplification in silicon/Pyrex microdevices depending on the type of device and fabrication method used and the quality of reagents, rather than on the passivation treatment or increment in standard Taq polymerase concentration.


Assuntos
DNA/química , Sistemas Microeletromecânicos/métodos , Microscopia de Força Atômica/métodos , Reação em Cadeia da Polimerase/métodos , Dióxido de Silício/química , Silício/química , Espectroscopia Fotoeletrônica/métodos , Reação em Cadeia da Polimerase/efeitos da radiação , Silício/efeitos da radiação , Propriedades de Superfície/efeitos dos fármacos
20.
Eur J Hum Genet ; 27(3): 466-474, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30341416

RESUMO

Hereditary hearing loss (HHL) is an extremely heterogeneous disorder with autosomal dominant, recessive, and X-linked forms. Here, we described an Italian pedigree affected by HHL but also prostate hyperplasia and increased ratio of the free/total PSA levels, with the unusual and extremely rare Y-linked pattern of inheritance. Using exome sequencing we found a missense variant (r.206A>T leading to p.Asp69Val) in the TBL1Y gene. TBL1Y is homologous of TBL1X, whose partial deletion has described to be involved in X-linked hearing loss. Here, we demonstrate that it has a restricted expression in adult human cochlea and prostate and the variant identified induces a lower protein stability caused by misfolded mutated protein that impairs its cellular function. These findings indicate that TBL1Y could be considered a novel candidate for HHL.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo Y/genética , Perda Auditiva/genética , Hiperplasia Prostática/genética , Transducina/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cóclea/metabolismo , Feminino , Doenças Genéticas Ligadas ao Cromossomo Y/patologia , Perda Auditiva/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Próstata/metabolismo , Hiperplasia Prostática/patologia , Estabilidade Proteica , Síndrome , Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA