Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Biosyst ; 4(2): e1900103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32293136

RESUMO

Three models of division control are proposed to achieve cell size homeostasis: sizer, timer, and adder. However, few published studies of division control take into account the dynamics of single-cell growth and most assume that single-cell growth is exponential. Here, computational simulations considering exponential, linear, and bilinear growth models are performed. These simulations confirm that a timer division control model alone cannot lead to size homeostasis if the single-cell growth model is exponential. Furthermore, timer and adder division control models cannot be distinguished if the single-cell growth model is linear. Models of division control cannot be easily differentiated by analysis of average cell behavior because the birth sizes of the majority of cells are close to the population average. However, the differences between division control models are amplified in outlier cells whose birth size is far from the average. A method is introduced for vector field analysis of the speed of convergence of outlier lineages toward the steady-state birth size, which can help to distinguish between division control models and single-cell growth models.


Assuntos
Divisão Celular/fisiologia , Tamanho Celular , Simulação por Computador , Modelos Biológicos , Proliferação de Células/fisiologia , Homeostase/fisiologia , Análise de Célula Única
2.
Nat Commun ; 11(1): 452, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974342

RESUMO

Mycobacteria grow by inserting new cell wall material in discrete zones at the cell poles. This pattern implies that polar growth zones must be assembled de novo at each division, but the mechanisms that control the initiation of new pole growth are unknown. Here, we combine time-lapse optical and atomic force microscopy to measure single-cell pole growth in mycobacteria with nanometer-scale precision. We show that single-cell growth is biphasic due to a lag phase of variable duration before the new pole transitions from slow to fast growth. This transition and cell division are independent events. The difference between the lag and interdivision times determines the degree of single-cell growth asymmetry, which is high in fast-growing species and low in slow-growing species. We propose a biphasic growth model that is distinct from previous unipolar and bipolar models and resembles "new end take off" (NETO) dynamics of polar growth in fission yeast.


Assuntos
Modelos Biológicos , Mycobacterium/citologia , Mycobacterium/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Força Atômica , Mycobacterium/genética , Análise Espaço-Temporal , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA