Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012499, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39292703

RESUMO

Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Imunoglobulina G , Polissacarídeos , Humanos , Polissacarídeos/imunologia , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , HIV-1/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Monoclonais/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia
2.
J Virol ; 98(1): e0147823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38085509

RESUMO

Consistent elicitation of serum antibody responses that neutralize diverse clades of HIV-1 remains a primary goal of HIV-1 vaccine research. Prior work has defined key features of soluble HIV-1 Envelope (Env) immunogen cocktails that influence the neutralization breadth and potency of multivalent vaccine-elicited antibody responses including the number of Env strains in the regimen. We designed immunization groups that consisted of different numbers of SOSIP Env strains to be used in a cocktail immunization strategy: the smallest cocktail (group 2) consisted of a set of two Env strains, which were a subset of the three Env strains that made up group 3, which, in turn, were a subset of the six Env strains that made up group 4. Serum neutralizing titers were modestly broader in guinea pigs that were immunized with a cocktail of three Envs compared to cocktails of two and six, suggesting that multivalent Env immunization could provide a benefit but may be detrimental when the cocktail size is too large. We then adapted the LIBRA-seq platform for antibody discovery to be compatible with guinea pigs, and isolated several tier 2 neutralizing monoclonal antibodies. Three antibodies isolated from two separate guinea pigs were similar in their gene usage and CDR3s, establishing evidence for a guinea pig public clonotype elicited through vaccination. Taken together, this work investigated multivalent HIV-1 Env immunization strategies and provides a novel methodology for screening guinea pig B cell receptor antigen specificity at a high-throughput level using LIBRA-seq.IMPORTANCEMultivalent vaccination with soluble Env immunogens is at the forefront of HIV-1 vaccination strategies but little is known about the influence of the number of Env strains included in vaccine cocktails. Our results suggest that adding more strains is sometimes beneficial but may be detrimental when the number of strains is too high. In addition, we adapted the LIBRA-seq platform to be compatible with guinea pig samples and isolated several tier 2 neutralizing monoclonal antibodies, some of which share V and J gene usage and >70% CDR3 identity, thus establishing the existence of public clonotypes in guinea pigs elicited through vaccination.


Assuntos
Vacinas contra a AIDS , Formação de Anticorpos , HIV-1 , Animais , Cobaias , Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais , Anticorpos Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Anti-HIV , Infecções por HIV/imunologia , HIV-1/genética
3.
mBio ; : e0156024, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264172

RESUMO

Throughout life, humans experience repeated exposure to viral antigens through infection and vaccination, resulting in the generation of diverse, antigen-specific antibody repertoires. A paramount feature of antibodies that enables their critical contributions in counteracting recurrent and novel pathogens, and consequently fostering their utility as valuable targets for therapeutic and vaccine development, is the exquisite specificity displayed against their target antigens. Yet, there is still limited understanding of the determinants of antibody-antigen specificity, particularly as a function of antibody sequence. In recent years, experimental characterization of antibody repertoires has led to novel insights into fundamental properties of antibody sequences but has been largely decoupled from at-scale antigen specificity analysis. Here, using the LIBRA-seq technology, we generated a large data set mapping antibody sequence to antigen specificity for thousands of B cells, by screening the repertoires of a set of healthy individuals against 20 viral antigens representing diverse pathogens of biomedical significance. Analysis uncovered virus-specific patterns in variable gene usage, gene pairing, somatic hypermutation, as well as the presence of convergent antiviral signatures across multiple individuals, including the presence of public antibody clonotypes. Notably, our results showed that, for B-cell receptors originating from different individuals but leveraging an identical combination of heavy and light chain variable genes, there is a specific CDRH3 identity threshold above which B cells appear to exclusively share the same antigen specificity. This finding provides a quantifiable measure of the relationship between antibody sequence and antigen specificity and further defines experimentally grounded criteria for defining public antibody clonality.IMPORTANCEThe B-cell compartment of the humoral immune system plays a critical role in the generation of antibodies upon new and repeated pathogen exposure. This study provides an unprecedented level of detail on the molecular characteristics of antibody repertoires that are specific to each of the different target pathogens studied here and provides empirical evidence in support of a 70% CDRH3 amino acid identity threshold in pairs of B cells encoded by identical IGHV:IGL(K)V genes, as a means of defining public clonality and therefore predicting B-cell antigen specificity in different individuals. This is of exceptional importance when leveraging public clonality as a method to annotate B-cell receptor data otherwise lacking antigen specificity information. Understanding the fundamental rules of antibody-antigen interactions can lead to transformative new approaches for the development of antibody therapeutics and vaccines against current and emerging viruses.

4.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904915

RESUMO

Motivation: LIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in LIBRA-seq antigen count data is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies. Results: In this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages the VRC01 negative control cells included in a recent LIBRA-seq study(Abu-Shmais et al.) to provide a data-driven means for identification of technical noise. We apply this method to a dataset of nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for in vitro antibody-antigen binding when compared to the standard scoring method used in LIBRA-seq, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for future machine learning based approaches to predicting antibody-antigen binding as the corpus of LIBRA-seq data continues to grow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA