Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108736

RESUMO

The aim of this research was to investigate the bioremediation conditions of copper in synthetic water. In the present study, copper ions accumulation efficiency was determined using various genetically modified strains of Saccharomyces cerevisiae (EBY100, INVSc1, BJ5465, and GRF18), Pichia pastoris (X-33, KM71H), Escherichia coli (XL10 Gold, DH5α, and six types of BL21 (DE3)), and Escherichia coli BL21 (DE3) OverExpress expressing two different peroxidases. Viability tests of yeast and bacterial strains showed that bacteria are viable at copper concentrations up to 2.5 mM and yeasts up to 10 mM. Optical emission spectrometry with inductively coupled plasma analysis showed that the tolerance of bacterial strains on media containing 1 mM copper was lower than the tolerance of yeast strains at the same copper concentration. The E. coli BL21 RIL strain had the best copper accumulation efficiency (4.79 mg/L of culture normalized at an optical density of 1.00), which was 1250 times more efficient than the control strain. The yeast strain S. cerevisiae BJ5465 was the most efficient in copper accumulation out of a total of six yeast strains used, accumulating over 400 times more than the negative control strain. In addition, E. coli cells that internally expressed recombinant peroxidase from Thermobifida fusca were able to accumulate 400-fold more copper than cells that produced periplasmic recombinant peroxidases.


Assuntos
Cobre , Metais Pesados , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Biodegradação Ambiental , Alérgenos , Peroxidases , Proteínas Recombinantes/genética
2.
Adv Respir Med ; 92(3): 218-229, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921061

RESUMO

Ragweed pollen allergy is the most common seasonal allergy in western Romania. Prolonged exposure to ragweed pollen may induce sensitization to pan-allergens such as calcium-binding proteins (polcalcins) and progression to more severe symptoms. We aimed to detect IgE sensitization to recombinant Amb a 9 and Amb a 10 in a Romanian population, to assess their potential clinical relevance and cross-reactivity, as well as to investigate the relation with clinical symptoms. rAmb a 9 and rAmb a 10 produced in Escherichia coli were used to detect specific IgE in sera from 87 clinically characterized ragweed-allergic patients in ELISA, for basophil activation experiments and rabbit immunization. Rabbit rAmb a 9- and rAmb a 10-specific sera were used to detect possible cross-reactivity with rArt v 5 and reactivity towards ragweed and mugwort pollen extracts. The results showed an IgE reactivity of 25% to rAmb a 9 and 35% to rAmb a 10. rAmb a 10 induced basophil degranulation in three out of four patients tested. Moreover, polcalcin-negative patients reported significantly more skin symptoms, whereas polcalcin-positive patients tended to report more respiratory symptoms. Furthermore, both rabbit antisera showed low reactivity towards extracts and showed high reactivity to rArt v 5, suggesting strong cross-reactivity. Our study indicated that recombinant ragweed polcalcins might be considered for molecular diagnosis.


Assuntos
Proteínas de Ligação ao Cálcio , Reações Cruzadas , Imunoglobulina E , Rinite Alérgica Sazonal , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Reações Cruzadas/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/sangue , Romênia , Proteínas de Ligação ao Cálcio/imunologia , Antígenos de Plantas/imunologia , Alérgenos/imunologia , Feminino , Masculino , Ambrosia/imunologia , Coelhos , Adulto , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA