Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134440

RESUMO

In this paper, we demonstrate experimentally that field-effect transistors with nanoconstricted graphene monolayer channels have a subthreshold swing (SS) below 60 mV/dec, which is slightly dependent on temperature. Two shapes of nanoconstricted graphene monolayers are considered: (i) a bow-tie shape, representative for a symmetric channel, and (ii) a trapezoidal shape, which illustrates an asymmetric channel. While both types of nonuniform channels are opening a bandgap in graphene, thus showing an on/off ratio of 105, the SS in the graphene bow-tie channel is below 60 mV/dec in the temperature range 25 °C-44 °C.

2.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706454

RESUMO

In this paper, we show in a series of experiments on 10 nm thick SnS thin film-based back-gate transistors that in the absence of the gate voltage, the drain current versus drain voltage (ID-VD) dependence is characterized by a weak drain current and by an ambipolar transport mechanism. When we apply a gate voltage as low as 1µV, the current increases by several orders of magnitude and theID-VDdependence changes drastically, with the SnS behaving as ap-type semiconductor. This happens because the current flows from the source (S) to the drain (D) electrode through a discontinuous superficial region of the SnS film when no gate voltage is applied. On the contrary, when minute gate voltages are applied, the vertical electric field applied to the multilayer SnS induces a change in the flow path of the charge carriers, involving the inner and continuous SnS layer in the electrical conduction. Moreover, we show that high gate voltages can tune significantly the SnS bandgap.

3.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36850358

RESUMO

In this study we analyzed the structure and light-sensing properties of as-deposited vanadium oxide thin films, prepared by RF sputtering in different Ar:O2 flow rate conditions, at low temperature (e.g., 65 °C). X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to analyze the film microstructure, composition and the oxidation states of vanadium ions. The SEM micrographs evidence VxOy films with smooth surfaces, whereas the XRD patterns show their amorphous structure. Raman spectra indicate an increased structural disorder in the films deposited in Ar:O2 flow comparatively with those deposited solely in Ar flow. The XPS data suggest the modification of the oxidation state from V4+ to V5+, thus proving the formation of the V2O5 phase when increasing the oxygen content, which further affects the films' optical properties. We observed a good stability of the photogenerated current in Si/SiO2/VxOy/TiN heterostructures upon excitation with pulses of UV (360 nm), VIS (white light) and NIR (860 nm) light. The responsivity, detectivity and linear dynamic range parameters increase with the O/V ratio in the VxOy films, reaching comparable values with photodetectors based on crystalline V2O5 or VO2.

4.
Sensors (Basel) ; 23(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687953

RESUMO

Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 µm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 µs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 µC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.


Assuntos
Carbono , Grafite , Animais , Ratos , Bandagens , Transporte Biológico , Eletrodos
5.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35767973

RESUMO

In this paper, we present for the first time a field-effect-transistor (FET) having a 10 nm thick tin sulfide (SnS) channel fabricated at the wafer scale with high reproducibility. SnS-based FETs are in on-state for increasing positive back-gate voltages up to 6 V, whereas the off-state is attained for negative back-gate voltages not exceeding -6 V, the on/off ratio being in the range 102-103depending on FET dimensions. The SnS FETs show a subthreshold slope (SS) below 60 mV/decade thanks to the in-plane ferroelectricity of SnS and attaining a minimum value SS = 21 mV/decade. Moreover, the low SS values can be explained by the existence of a negative value of the capacitance of the SnS thin film up to 10 GHz (for any DC bias voltage between 1 and 5 V), with the minimum value being -12.87 pF at 0.1 GHz.

6.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35235921

RESUMO

In this paper we present the microwave properties of tin sulfide (SnS) thin films with the thickness of just 10 nm, grown by RF magnetron sputtering techniques on a 4 inch silicon dioxide/high-resistivity silicon wafer. In this respect, interdigitated capacitors in coplanar waveguide technology were fabricated directly on the SnS film to be used as both phase shifters and detectors, depending on the ferroelectric or semiconductor behaviour of the SnS material. The ferroelectricity of the semiconducting thin layer manifests itself in a strong dependence of the electrical permittivity on the applied DC bias voltage, which induces a phase shift of 30 degrees mm-1at 1 GHz and of 8 degrees mm-1at 10 GHz, whereas the transmission losses are less than 2 dB in the frequency range 2-20 GHz. We have also investigated the microwave detection properties of SnS, obtaining at 1 GHz a voltage responsivity of about 30 mV mW-1in the unbiased case and with an input power level of only 16µW.

7.
Nanomaterials (Basel) ; 10(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081017

RESUMO

In this paper, we present microwave filters that are based on 6-nm-thick ferroelectric thin films of hafnium oxide doped with zirconium (HfZrO), which are tunable continuously in targeted bands of interest within the frequency range 0.1-16 GHz, when the applied direct current (DC) voltage is swept between 0 V and 4 V. Here, we exploit the orthorhombic polar phase in HfO2 through a careful doping using zirconium in an Atomic Layer Deposition (ALD) process, in order to guarantee phase stabilization at room temperature. Polarization versus voltage characterization has been carried out, showing a remanent polarization (Pr) of ~0.8 µC/cm2 and the coercive voltage at ~2.6 V. The average roughness has been found to be 0.2 nm for HfZrO films with a thickness of 6 nm. The uniform topography, without holes, and the low surface roughness demonstrate that the composition and the structure of the film are relatively constant in volume. Three filter configurations (low-pass, high-pass, and band-pass) have been designed, modelled, fabricated, and fully characterized in microwaves, showing a frequency shift of the minimum of the reflection coefficient between 90 MHz and 4.4 GHz, with a minimum insertion loss of approximately 6.9 dB in high-pass configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA