Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuroinflammation ; 14(1): 80, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388927

RESUMO

BACKGROUND: Birth cohort studies link gestational diabetes mellitus (GDM) with impaired cognitive performance in the offspring. However, the mechanisms involved are unknown. We tested the hypothesis that obesity-associated GDM induces chronic neuroinflammation and disturbs the development of neuronal circuitry resulting in impaired cognitive abilities in the offspring. METHODS: In rats, GDM was induced by feeding dams a diet high in sucrose and fatty acids. Brains of neonatal (E20) and young adult (15-week-old) offspring of GDM and lean dams were analyzed by immunohistochemistry, cytokine assay, and western blotting. Young adult offspring of GDM and lean dams went also through cognitive assessment. Cultured microglial responses to elevated glucose and/or fatty acids levels were analyzed. RESULTS: In rats, impaired recognition memory was observed in the offspring of GDM dams. GDM exposure combined with a postnatal high-fat and sucrose diet resulted in atypical inattentive behavior in the offspring. These cognitive changes correlated with reduced density and derangement of Cornu Ammonis 1 pyramidal neuronal layer, decreased hippocampal synaptic integrity, increased neuroinflammatory status, and reduced expression of CX3CR1, the microglial fractalkine receptor regulating microglial pro-inflammatory responses and synaptic pruning. Primary microglial cultures that were exposed to high concentrations of glucose and/or palmitate were transformed into an activated, amoeboid morphology with increased nitric oxide and superoxide production, and altered their cytokine release profile. CONCLUSIONS: These findings demonstrate that GDM stimulates microglial activation and chronic inflammatory responses in the brain of the offspring that persist into young adulthood. Reactive gliosis correlates positively with hippocampal synaptic decline and cognitive impairments. The elevated pro-inflammatory cytokine expression at the critical period of hippocampal synaptic maturation suggests that neuroinflammation might drive the synaptic and cognitive decline in the offspring of GDM dams. The importance of microglia in this process is supported by the reduced Cx3CR1 expression as an indication of the loss of microglial control of inflammatory responses and phagocytosis and synaptic pruning in GDM offspring.


Assuntos
Cognição/fisiologia , Diabetes Gestacional/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Células Cultivadas , Diabetes Gestacional/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Feminino , Hipocampo/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
2.
J Neuroinflammation ; 12: 229, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637332

RESUMO

BACKGROUND: The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. METHODS: Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measures included calcium imaging, PARP-1 activation status, NF-κB transcriptional activity, DNA damage assesment and cytokine relesease profiling. RESULTS: TNFα induces PARP-1 activation in the absence of detectable DNA strand breaks, as measured by the PANT assay. TNFα-induced transcriptional activation of NF-κB requires PARP-1 enzymatic activity. Enzymatic activation of PARP-1 by TNFα was blocked in Ca(2+)-free medium, by Ca(2+) chelation with BAPTA-AM, and by D609, an inhibitor of phoshatidyl choline-specific phospholipase C (PC-PLC), but not by thapsigargin or by U73112, an inhibitor of phosphatidyl inisitol-specific PLC (PI -PLC). A TNFR1 blocking antibody reduced Ca(2+) influx and PARP-1 activation. TNFα-induced PARP-1 activation was also blocked by siRNA downregulation of ERK2 and by PD98059, an inhibitor of the MEK / ERK protein kinase cascade. Moreover, TNFα-induced NF-κB (p65) transcriptional activation was absent in cells expressing PARP-1 that lacked ERK2 phosphorylation sites, while basal NF-κB transcriptional activation increased in cells expressing PARP-1 with a phosphomimetic substitution at an ERK2 phophorylation site. CONCLUSIONS: These results suggest that TNFα induces PARP-1 activation through a signaling pathway involving TNFR1, Ca(2+) influx, activation of PC-PLC, and activation of the MEK1 / ERK2 protein kinase cascade. TNFα-induced PARP-1 activation is not associated with DNA damage, but ERK2 mediated phosphorylation of PARP-1.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/fisiologia , NF-kappa B/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/fisiologia , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Fosfolipases Tipo C/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Quelantes/farmacologia , Dano ao DNA , Ativação Enzimática/efeitos dos fármacos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Poli(ADP-Ribose) Polimerase-1 , RNA Interferente Pequeno/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores
3.
ChemMedChem ; 19(9): e202300705, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38329887

RESUMO

Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs. Further, the highly lipoidal blood-brain barrier (BBB) limits the uptake of many therapeutic molecules into the brain and is a complicating factor in the development of new agents to treat neurodegeneration. Considering the highly complex nature of NDDs, the association of multiple risk factors, and the challenges to overcome the BBB junction, medicinal chemists have developed small organic molecule-based novel approaches to target NDDs over the last few decades, such as designing lipophilic molecules and applying prodrug strategies. Attempts have been made to utilize a multitarget approach to modulate different biochemical molecular pathways involved in NDDs, in addition to, medicinal chemists making better decisions in identifying optimized drug candidates for the central nervous system (CNS) by using web-based computational tools. To increase the clinical success of these drug candidates, an in vitro assay modeling the BBB has been utilized by medicinal chemists in the pre-clinical phase as a further screening measure of small organic molecules. Herein, we examine some of the intriguing strategies taken by medicinal chemists to design small organic molecules to combat NDDs, with the intention of increasing our awareness of neurodegenerative therapeutics.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Bibliotecas de Moléculas Pequenas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Química Farmacêutica , Estrutura Molecular
4.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35337063

RESUMO

In this review, the history of boron's early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron's emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA