Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infancy ; 28(4): 820-835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36917082

RESUMO

Human body postures provide perceptual cues that can be used to discriminate and recognize emotions. It was previously found that 7-months-olds' fixation patterns discriminated fear from other emotion body expressions but it is not clear whether they also process the emotional content of those expressions. The emotional content of visual stimuli can increase arousal level resulting in pupil dilations. To provide evidence that infants also process the emotional content of expressions, we analyzed variations in pupil in response to emotion stimuli. Forty-eight 7-months-old infants viewed adult body postures expressing anger, fear, happiness and neutral expressions, while their pupil size was measured. There was a significant emotion effect between 1040 and 1640 ms after image onset, when fear elicited larger pupil dilations than neutral expressions. A similar trend was found for anger expressions. Our results suggest that infants have increased arousal to negative-valence body expressions. Thus, in combination with previous fixation results, the pupil data show that infants as young as 7-months can perceptually discriminate static body expressions and process the emotional content of those expressions. The results extend information about infant processing of emotion expressions conveyed through other means (e.g., faces).


Assuntos
Emoções , Pupila , Adulto , Humanos , Lactente , Pupila/fisiologia , Emoções/fisiologia , Medo , Ira , Nível de Alerta/fisiologia
2.
Sensors (Basel) ; 23(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765987

RESUMO

There have been sustained efforts toward using naturalistic methods in developmental science to measure infant behaviors in the real world from an egocentric perspective because statistical regularities in the environment can shape and be shaped by the developing infant. However, there is no user-friendly and unobtrusive technology to densely and reliably sample life in the wild. To address this gap, we present the design, implementation and validation of the EgoActive platform, which addresses limitations of existing wearable technologies for developmental research. EgoActive records the active infants' egocentric perspective of the world via a miniature wireless head-mounted camera concurrently with their physiological responses to this input via a lightweight, wireless ECG/acceleration sensor. We also provide software tools to facilitate data analyses. Our validation studies showed that the cameras and body sensors performed well. Families also reported that the platform was comfortable, easy to use and operate, and did not interfere with daily activities. The synchronized multimodal data from the EgoActive platform can help tease apart complex processes that are important for child development to further our understanding of areas ranging from executive function to emotion processing and social learning.


Assuntos
Dispositivos Eletrônicos Vestíveis , Lactente , Criança , Humanos , Software , Tecnologia , Sistema Nervoso Autônomo
3.
J Exp Child Psychol ; 224: 105497, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35850023

RESUMO

Body movements provide a rich source of emotional information during social interactions. Although the ability to perceive biological motion cues related to those movements begins to develop during infancy, processing those cues to identify emotions likely continues to develop into childhood. Previous studies used posed or exaggerated body movements, which might not reflect the kind of body expressions children experience. The current study used an event-related potential (ERP) priming paradigm to investigate the development of emotion recognition from more naturalistic body movements. Point-light displays (PLDs) of male adult bodies expressing happy or angry emotional movements while narrating a story were used as prime stimuli, whereas audio recordings of the words "happy" and "angry" spoken with an emotionally neutral prosody were used as targets. We recorded the ERPs time-locked to the onset of the auditory target from 3- and 6-year-old children, and we compared amplitude and latency of the N300 and N400 responses between the two age groups in the different prime-target conditions. There was an overall effect of prime for the N300 amplitude, with more negative-going responses for happy PLDs compared with angry PLDs. There was also an interaction between prime and target for the N300 latency, suggesting that all children were sensitive to the emotional congruency between body movements and words. For the N400 component, there was only an interaction among age, prime, and target for latency, suggesting an age-dependent modulation of this component when prime and target did not match in emotional information. Overall, our results suggest that the emergence of more complex emotion processing of body expressions occurs around 6 years of age, but it is not fully developed at this point in ontogeny.


Assuntos
Eletroencefalografia , Potenciais Evocados , Adulto , Ira , Criança , Pré-Escolar , Sinais (Psicologia) , Emoções/fisiologia , Potenciais Evocados/fisiologia , Expressão Facial , Feminino , Humanos , Masculino
4.
J Vis ; 21(5): 5, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33951142

RESUMO

While motion information is important for the early stages of vision, it also contributes to later stages of object recognition. For example, human observers can detect the presence of a human, judge its actions, and judge its gender and identity simply based on motion cues conveyed in a point-light display. Here we examined whether object expertise enhances the observer's sensitivity to its characteristic movement. Bird experts and novices were shown point-light displays of upright and inverted birds in flight, or upright and inverted human walkers, and asked to discriminate them from spatially scrambled point-light displays of the same stimuli. While the spatially scrambled stimuli retained the local motion of each dot of the moving objects, it disrupted the global percept of the object in motion. To estimate a detection threshold in each object domain, we systematically varied the number of noise dots in which the stimuli were embedded using an adaptive staircase approach. Contrary to our predictions, the experts did not show disproportionately higher sensitivity to bird motion, and both groups showed no inversion cost. However, consistent with previous work showing a robust inversion effect for human motion, both groups were more sensitive to upright human walkers than their inverted counterparts. Thus, the result suggests that real-world experience in the bird domain has little to no influence on the sensitivity to bird motion and that birds do not show the typical inversion effect seen with humans and other terrestrial movement.


Assuntos
Percepção de Movimento , Animais , Aves , Sinais (Psicologia) , Humanos , Movimento (Física) , Percepção Visual
5.
J Neurosci ; 39(28): 5506-5516, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31068438

RESUMO

Efficient perception in natural environments depends on neural interactions between voluntary processes within cognitive control, such as attention, and those that are automatic and subconscious, such as brain adaptation to predictable input (also called repetition suppression). Although both attention and adaptation have been studied separately and there is considerable knowledge of the neurobiology involved in each of these processes, how attention interacts with adaptation remains equivocal. We examined how attention interacts with visual and auditory adaptation by measuring neuroimaging effects consistent with changes in either neural gain or selectivity. Male and female human participants were scanned with functional magnetic resonance imaging (fMRI) first while they discriminated repetition of morphed faces or voices and either directed their attention to stimulus identity or spatial location. Attention to face or voice identity, while ignoring stimulus location, solely increased the gain of respectively face- or voice-sensitive cortex. The results were strikingly different in an experiment when participants attended to voice identity versus stimulus loudness. In this case, attention to voice while ignoring sound loudness increased neural selectivity. The combined results show that how attention affects adaptation depends on the level of feature-based competition, reconciling prior conflicting observations. The findings are theoretically important and are discussed in relation to neurobiological interactions between attention and different types of predictive signals.SIGNIFICANCE STATEMENT Adaptation to repeated environmental events is ubiquitous in the animal brain, an automatic typically subconscious, predictive signal. Cognitive influences, such as by attention, powerfully affect sensory processing and can overcome brain adaptation. However, how neural interactions occur between adaptation and attention remains controversial. We conducted fMRI experiments regulating the focus of attention during adaptation to repeated stimuli with perceptually balanced stimulus expectancy. We observed an interaction between attention and adaptation consistent with increased neural selectivity, but only under conditions of feature-based competition, challenging the notion that attention interacts with brain adaptation by only affecting response gain. This demonstrates that attention retains its full complement of mechanistic influences on sensory cortex even as it interacts with more automatic or subconscious predictive processes.


Assuntos
Adaptação Fisiológica , Atenção , Encéfalo/fisiologia , Estado de Consciência , Inconsciente Psicológico , Percepção Auditiva , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção Visual , Adulto Jovem
6.
J Cogn Neurosci ; 30(4): 449-467, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29211654

RESUMO

Human adults have a rich visual experience thanks to seeing human faces since birth, which may contribute to the acquisition of perceptual processes that rapidly and automatically individuate faces. According to a generic visual expertise hypothesis, extensive experience with nonface objects may similarly lead to efficient processing of objects at the individual level. However, whether extensive training in adulthood leads to visual expertise remains debated. One key issue is the extent to which the acquisition of visual expertise depends on the resemblance of objects to faces in terms of the spatial configuration of parts. We therefore trained naive human adults to individuate a large set of novel parametric multipart objects. Critically, one group of participants trained with the objects in a "facelike" stimulus orientation, whereas a second group trained with the same objects but with the objects rotated 180° in the picture plane into a "nonfacelike" orientation. We used a fast periodic visual stimulation EEG protocol to objectively quantify participants' ability to discriminate untrained exemplars before and after training. EEG responses associated with the frequency of identity change in a fast stimulation sequence, which reflects rapid and automatic perceptual processes, were observed over lateral occipital sites for both groups before training. There was a significant, albeit small, increase in these responses after training but only for the facelike group and only to facelike stimuli. Our findings indicate that perceived facelikeness plays a role in visual expertise and highlight how the adult perceptual system exploits familiar spatial configurations when learning new object categories.


Assuntos
Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Prática Psicológica , Reconhecimento Psicológico/fisiologia , Adulto Jovem
7.
J Vis ; 17(6): 17, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654962

RESUMO

The ability to perceive and recognize objects is essential to many animals, including humans. Until recently, models of object recognition have primarily focused on static cues, such as shape, but more recent research is beginning to show that motion plays an important role in object perception. Most studies have focused on rigid motion, a type of motion most often associated with inanimate objects. In contrast, nonrigid motion is often associated with biological motion and is therefore ecologically important to visually dependent animals. In this study, we examined the relative contribution of nonrigid motion and shape to object perception in humans and pigeons, two species that rely extensively on vision. Using a parametric morphing technique to systematically vary nonrigid motion and three-dimensional shape information, we found that both humans and pigeons were able to rely solely on either shape or nonrigid motion information to identify complex objects when one of the two cues was degraded. Humans and pigeons also showed similar 80% accuracy thresholds when the information from both shape and motion cues were degraded. We argue that the use of nonrigid motion for object perception is evolutionarily important and should be considered in general theories of vision at least with respect to visually sophisticated animals.


Assuntos
Percepção de Forma/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Animais , Columbidae , Sinais (Psicologia) , Feminino , Humanos , Masculino , Adulto Jovem
8.
Cereb Cortex ; 25(6): 1519-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24351977

RESUMO

The brain must convert retinal coordinates into those required for directing an effector. One prominent theory holds that, through a combination of visual and motor/proprioceptive information, head-/body-centered representations are computed within the posterior parietal cortex (PPC). An alternative theory, supported by recent visual and saccade functional magnetic resonance imaging (fMRI) topographic mapping studies, suggests that PPC neurons provide a retinal/eye-centered coordinate system, in which the coding of a visual stimulus location and/or intended saccade endpoints should remain unaffected by changes in gaze position. To distinguish between a retinal/eye-centered and a head-/body-centered coordinate system, we measured how gaze direction affected the representation of visual space in the parietal cortex using fMRI. Subjects performed memory-guided saccades from a central starting point to locations "around the clock." Starting points varied between left, central, and right gaze relative to the head-/body midline. We found that memory-guided saccadotopic maps throughout the PPC showed spatial reorganization with very subtle changes in starting gaze position, despite constant retinal input and eye movement metrics. Such a systematic shift is inconsistent with models arguing for a retinal/eye-centered coordinate system in the PPC, but it is consistent with head-/body-centered coordinate representations.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Fixação Ocular/fisiologia , Lobo Parietal/fisiologia , Vias Visuais/fisiologia , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Estimulação Luminosa , Campos Visuais/fisiologia , Vias Visuais/irrigação sanguínea
9.
J Vis ; 14(9)2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25113021

RESUMO

In the current study, we examined how color knowledge in a domain of expertise influences the accuracy and speed of object recognition. In Experiment 1, expert bird-watchers and novice participants categorized common birds (e.g., robin, sparrow, cardinal) at the family level of abstraction. The bird images were shown in their natural congruent color, nonnatural incongruent color, and gray scale. The main finding was that color affected the performance of bird experts and bird novices, albeit in different ways. Although both experts and novices relied on color to recognize birds at the family level, analysis of the response time distribution revealed that color facilitated expert performance in the fastest and slowest trials whereas color only helped the novices in the slower trials. In Experiment 2, expert bird-watchers were asked to categorize congruent color, incongruent color, and gray scale images of birds at the more subordinate, species level (e.g., Nashville warbler, Wilson's warbler). The performance of experts was better with congruent color images than with incongruent color and gray scale images. As in Experiment 1, analysis of the response time distribution showed that the color effect was present in the fastest trials and was sustained through the slowest trials. Collectively, the findings show that experts have ready access to color knowledge that facilitates their fast and accurate identification at the family and species level of recognition.


Assuntos
Percepção de Cores/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Idoso , Animais , Aves , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Adulto Jovem
10.
Bioelectron Med ; 10(1): 2, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195618

RESUMO

BACKGROUND: Preclinical models of spinal cord stimulation (SCS) are lacking objective measurements to inform translationally applicable SCS parameters. The evoked compound action potential (ECAP) represents a measure of dorsal column fiber activation. This measure approximates the onset of SCS-induced sensations in humans and provides effective analgesia when used with ECAP-controlled closed-loop (CL)-SCS systems. Therefore, ECAPs may provide an objective surrogate for SCS dose in preclinical models that may support better understanding of SCS mechanisms and further translations to the clinics. This study assessed, for the first time, the feasibility of recording ECAPs and applying ECAP-controlled CL-SCS in freely behaving rats subjected to an experimental model of neuropathic pain. METHODS: Adult male Sprague-Dawley rats (200-300 g) were subjected to spared nerve injury (SNI). A custom-made six-contact lead was implanted epidurally covering T11-L3, as confirmed by computed tomography or X-ray. A specially designed multi-channel system was used to record ECAPs and to apply ECAP-controlled CL-SCS for 30 min at 50 Hz 200 µs. The responses of dorsal column fibers to SCS were characterized and sensitivity towards mechanical and cold stimuli were assessed to determine analgesic effects from ECAP-controlled CL-SCS. Comparisons between SNI rats and their controls as well as between stimulation parameters were made using omnibus analysis of variance (ANOVA) tests and t-tests. RESULTS: The recorded ECAPs showed the characteristic triphasic morphology and the ECAP amplitude (mV) increased as higher currents (mA) were applied in both SNI animals and controls (SNI SCS-ON and sham SCS-ON). Importantly, the use of ECAP-based SCS dose, implemented in ECAP-controlled CL-SCS, significantly reduced mechanical and cold hypersensitivity in SNI SCS-ON animals through the constant and controlled activation of dorsal column fibers. An analysis of conduction velocities of the evoked signals confirmed the involvement of large, myelinated fibers. CONCLUSIONS: The use of ECAP-based SCS dose implemented in ECAP-controlled CL-SCS produced analgesia in animals subjected to an experimental model of neuropathic pain. This approach may offer a better method for translating SCS parameters between species that will improve understanding of the mechanisms of SCS action to further advance future clinical applications.

11.
Behav Res Methods ; 45(1): 98-107, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23055157

RESUMO

We extend a Bayesian method for combining estimates of means and variances from independent cues in a spatial cue-combination paradigm. In a typical cue-combination experiment, subjects estimate a value on a single dimension-for example, depth-on the basis of two different cues, such as retinal disparity and motion. The mathematics for this one-dimensional case is well established. When the variable to be estimated has two dimensions, such as location (which has both x and y values), then the one-dimensional method may be inappropriate due to possible correlations between x and y and the fact that the dimensions may be inseparable. A cue-combination task for location involves people or animals estimating xy locations under two single-cue conditions and in a condition in which both cues are combined. We present the mathematics for the two-dimensional case in an analogous manner to the one-dimensional case and illustrate them using a numeric example. Our example involves locations on maps, but the method illustrated is relevant for any task for which the estimated variable has two or more dimensions.


Assuntos
Teorema de Bayes , Sinais (Psicologia) , Modelos Biológicos , Análise Espacial , Comportamento Espacial/fisiologia , Percepção de Profundidade , Humanos , Masculino , Disparidade Visual/fisiologia
12.
Br J Pain ; 17(2): 126-141, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37057253

RESUMO

Background: Changes to the power of neural oscillations in cortical and sub-cortical structures can change pain perception. Rhythmic sensory stimulation is a non-invasive method that can increase power in specific frequencies of neural oscillations. If the stimulation frequency targets those frequencies related to pain perception, such as alpha or theta frequencies, there can be a reduction in perceived pain intensity. Thus, sensory neural entrainment may provide an alternative to pharmacological intervention for acute and chronic pain. This review aimed to identify and critically appraise the evidence on the effectiveness of sensory entrainment methods for pain perception. Methods: We undertook a systematic search across Medline, Embase, PsycInfo, Web of Science and Scopus in November 2020 to identify studies investigating the efficacy of sensory entrainment on adults. We assessed studies for their quality using the PRISMA checklist. A random-effects model was used in a meta-analysis to measure the effect of entrainment on pain perception. Results: Our systematic review yielded nine studies fitting the search criteria. Studies investigated the effect of visual and auditory entrainment on pain intensity rating, electrophysiological markers of pain and amount of analgesia needed during surgery. The meta-analysis suggests that alpha (8-13 Hz) sensory entrainment is effective for acute pain perception, whereas theta (4-7 Hz) entrainment is effective for chronic pain. Conclusions: Although there is heterogeneity in the current evidence, our review highlights the potential use of sensory entrainment to affect acute and chronic pain. Further research is required regarding the timing, duration and frequency of the stimulation to determine the best application for maximum efficacy.

13.
Sci Rep ; 13(1): 11437, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454134

RESUMO

A hallmark of expert object recognition is rapid and accurate subordinate-category recognition of visually homogenous objects. However, the perceptual strategies by which expert recognition is achieved is less known. The current study investigated whether visual expertise changes observers' perceptual field (e.g., their ability to use information away from fixation for recognition) for objects in their domain of expertise, using a gaze-contingent eye-tracking paradigm. In the current study, bird experts and novices were presented with two bird images sequentially, and their task was to determine whether the two images were of the same species (e.g., two different song sparrows) or different species (e.g., song sparrow and chipping sparrow). The first study bird image was presented in full view. The second test bird image was presented fully visible (full-view), restricted to a circular window centered on gaze position (central-view), or restricted to image regions beyond a circular mask centered on gaze position (peripheral-view). While experts and novices did not differ in their eye-movement behavior, experts' performance on the discrimination task for the fastest responses was less impaired than novices in the peripheral-view condition. Thus, the experts used peripheral information to a greater extent than novices, indicating that the experts have a wider perceptual field to support their speeded subordinate recognition.


Assuntos
Tecnologia de Rastreamento Ocular , Percepção Visual , Animais , Reconhecimento Psicológico/fisiologia , Aves , Movimentos Oculares
14.
Neuroimage ; 59(2): 1700-12, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-21924368

RESUMO

Neural regions selective for facial or bodily form also respond to facial or bodily motion in highly form-degraded point-light displays. Yet it is unknown whether these face-selective and body-selective regions are sensitive to human motion regardless of stimulus type (faces and bodies) or to the specific motion-related cues characteristic of their proprietary stimulus categories. Using fMRI, we show that facial and bodily motions activate selectively those populations of neurons that code for the static structure of faces and bodies. Bodily (vs. facial) motion activated body-selective EBA bilaterally and right but not left FBA, irrespective of whether observers judged the emotion or color-change in point-light angry, happy and neutral stimuli. Facial (vs. bodily) motion activated face-selective right and left FFA, but only during emotion judgments for right FFA. Moreover, the strength of responses to point-light bodies vs. faces positively correlated with voxelwise selectivity for static bodies but not faces, whereas the strength of responses to point-light faces positively correlated with voxelwise selectivity for static faces but not bodies. Emotional content carried by point-light form-from-motion cues was sufficient to enhance the activity of several regions, including bilateral EBA and right FFA and FBA. However, although the strength of emotional modulation in right and left EBA by point-light body movements was related to the degree of voxelwise selectivity to static bodies but not static faces, there was no evidence that emotional modulation in fusiform cortex occurred in a similarly stimulus category-selective manner. This latter finding strongly constrains the claim that emotionally expressive movements modulate precisely those neuronal populations that code for the viewed stimulus category.


Assuntos
Afeto/fisiologia , Imagem Corporal , Encéfalo/fisiologia , Emoções Manifestas/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Adaptação Fisiológica/fisiologia , Adulto , Face , Feminino , Humanos , Masculino , Adulto Jovem
15.
J Vis ; 12(3)2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22427696

RESUMO

Shape and motion are two dominant cues for object recognition, but it can be difficult to investigate their relative quantitative contribution to the recognition process. In the present study, we combined shape and non-rigid motion morphing to investigate the relative contributions of both types of cues to the discrimination of dynamic objects. In Experiment 1, we validated a novel parameter-based motion morphing technique using a single-part three-dimensional object. We then combined shape morphing with the novel motion morphing technique to pairs of multipart objects to create a joint shape and motion similarity space. In Experiment 2, participants were shown pairs of morphed objects from this space and responded "same" on the basis of motion-only, shape-only, or both cues. Both cue types influenced judgments: When responding to only one cue, the other cue could be ignored, although shape cues were more difficult to ignore. When responding on the basis of both cues, there was an overall bias to weight shape cues more than motion cues. Overall, our results suggest that shape influences discrimination more than motion even when both cue types have been made quantitatively equivalent in terms of their individual discriminability.


Assuntos
Sinais (Psicologia) , Discriminação Psicológica/fisiologia , Percepção de Forma/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Feminino , Humanos , Masculino , Modelos Neurológicos , Estimulação Luminosa/métodos , Psicometria
16.
Br J Pain ; 16(5): 518-527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36389008

RESUMO

Background: Extensive research has demonstrated that music and touch can separately attenuate perceived pain intensity. However, little research has investigated how auditory and tactile stimulation can synergistically enhance pain attenuation by music. In the current study, we investigated whether tactile stimulation can enhance music-induced analgesia for noxious force stimulation on the fingertip. Methods: We systematically applied force to 34 listeners' fingertips to induce pain. We then compared the force measurement (in Newton) that gave rise to the same perceived moderate pain intensity when listeners were presented their self-selected liked or disliked song with auditory-only, tactile-only and auditory-tactile stimulation. Higher force indicated less perceived pain. The tactile stimulation were low-frequency modulations extracted from the songs and presented as vibrations on the wrist. Results: The results showed a significant interaction between song preference and stimulation condition. Listeners had higher force measurements at the same moderate pain for their liked compared to disliked song only in the auditory-tactile condition. They also had higher force measurements for their liked song with auditory-tactile stimulation compared to the other remaining conditions except for the liked song with auditory-only stimulation. Conclusions: The addition of tactile stimulation enhanced music-induced analgesia which reduced subjective pain intensity. The findings suggest that combined auditory and tactile stimulation may increase the affective content of self-selected preferred music, which may stimulate affective and motivation mechanisms which inhibit pain transmission.

17.
J Dent ; 127: 104322, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228805

RESUMO

OBJECTIVES: To measure mercury release from standardised hydroxyapatite/amalgam constructs during MRI scanning and investigate the impact of static field strength and radiofrequency (RF) power on mercury release. METHODS: Amalgam was placed into 140 hydroxyapatite disks and matured for 14-days in artificial saliva. The solution was replaced, and samples split into five groups of 28 immediately prior to MRI. One group had no exposure, and the remainder were exposed to either a 3T or 7T MRI scanner, each at high and low RF power. Mercury concentration was measured by inductively coupled plasma mass spectrometry. Groups were compared using one-way ANOVA, and two-way ANOVA for main effects/ interaction of field strength/ RF power. RESULTS: Mercury concentration was increased in the 7T groups (high/ low: 15.43/ 11.33 ng mL-1) and 3T high group (3.59) compared to control (2.44). MRI field strength significantly increased mercury release (p < .001) as did RF power (p = .030). At 3T, mercury release was 20.3 times lower than during maturation of dental amalgam, and for the average person an estimated 1.50 ng kg-1 of mercury might be released during one 3T investigation; this is substantially lower than the tolerable weekly intake of 4,000 ng kg-1. CONCLUSION: Mercury release from amalgam shows a measurable increase following MRI, and the magnitude changes with magnetic field strength and RF power. The amount of mercury released is small compared to release during amalgam maturation. Amalgam mercury release during MRI is unlikely to be clinically meaningful and highly likely to remain below safe levels.


Assuntos
Amálgama Dentário , Mercúrio , Humanos , Amálgama Dentário/química , Mercúrio/análise , Mercúrio/química , Imageamento por Ressonância Magnética , Hidroxiapatitas
18.
Curr Biol ; 18(10): R427-R429, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18492475

RESUMO

We cannot help but categorize the visual world into objects like cats and faces. An intriguing new study shows that observers automatically discover informative fragments of visual objects during category learning.


Assuntos
Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Humanos
19.
Iperception ; 12(2): 20416695211004616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912338

RESUMO

Several lines of evidence point to the existence of a visual processing advantage for horizontal over vertical orientations. We investigated whether such a horizontal advantage exists in the context of top-down visual search. Inspired by change detection studies, we created displays where a dynamic target -- a horizontal or a vertical group of five dots that changed contrast synchronously -- was embedded within a randomly flickering grid of dots. The display size (total dots) varied across trials, and the orientation of the target was constant within interleaved blocks. As expected, search was slow and inefficient. Importantly, participants were almost a second faster finding horizontal compared to vertical targets. They were also more efficient and more accurate during horizontal search. Such findings establish that the attentional templates thought to guide search for known targets can exhibit strong orientation anisotropies. We discuss possible underlying mechanisms and how these might be explored in future studies.

20.
Atten Percept Psychophys ; 83(3): 1014-1035, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33169330

RESUMO

The accurate perception of human crowds is integral to social understanding and interaction. Previous studies have shown that observers are sensitive to several crowd characteristics such as average facial expression, gender, identity, joint attention, and heading direction. In two experiments, we examined ensemble perception of crowd speed using standard point-light walkers (PLW). Participants were asked to estimate the average speed of a crowd consisting of 12 figures moving at different speeds. In Experiment 1, trials of intact PLWs alternated with trials of scrambled PLWs with a viewing duration of 3 seconds. We found that ensemble processing of crowd speed could rely on local motion alone, although a globally intact configuration enhanced performance. In Experiment 2, observers estimated the average speed of intact-PLW crowds that were displayed at reduced viewing durations across five blocks of trials (between 2500 ms and 500 ms). Estimation of fast crowds was precise and accurate regardless of viewing duration, and we estimated that three to four walkers could still be integrated at 500 ms. For slow crowds, we found a systematic deterioration in performance as viewing time reduced, and performance at 500 ms could not be distinguished from a single-walker response strategy. Overall, our results suggest that rapid and accurate ensemble perception of crowd speed is possible, although sensitive to the precise speed range examined.


Assuntos
Expressão Facial , Percepção de Movimento , Atenção , Aglomeração , Humanos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA