Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microsc Microanal ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39268631

RESUMO

Atom probe tomography data are composed of a list of coordinates of the reconstructed atoms in the probed volume. The elemental identity of each atom is derived from time-of-flight mass spectrometry, with no local chemical information readily available. In this study, we use a data processing technique referred to as field evaporation energy loss spectroscopy (FEELS), which analyzes the tails of mass peaks. FEELS was used to extract critical energetic parameters that are related to the activation energy for atoms to escape from the surface under intense electrostatic field and dependent of the path followed by the departing atoms. We focused our study on pure face-centered cubic metals. We demonstrate that the energetic parameters can be mapped in two-dimensional with nanometric resolution. A dependence on the considered crystallographic planes is observed, with sets of planes of low Miller indices showing a lower sensitivity to the field. The temperature is also an important parameter in particular for aluminum, which we attribute to an energetic transition between two paths of field evaporation between 25 and 60 K close to (002) pole. This paper shows that the information that can be retrieved from the measured energy loss of surface atoms is important both experimentally and theoretically.

2.
Microsc Microanal ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758982

RESUMO

The investigation of hydrogen in atom probe tomography appears as a relevant challenge due to its low mass, high diffusion coefficient, and presence as a residual gas in vacuum chambers, resulting in multiple complications for atom probe studies. Different solutions were proposed in the literature like ex situ charging coupled with cryotransfer or H charging at high temperature in a separate chamber. Nevertheless, these solutions often faced challenges due to the complex control of specimen temperature during hydrogen charging and subsequent analysis. In this paper, we propose an alternative route for in situ H charging in atom probe derived from a method developed in field ion microscopy. By applying negative voltage nanosecond pulse on the specimen in an atom probe chamber under a low pressure of H2, it is demonstrated that a high dose of H can be implanted in the range 2-20 nm beneath the specimen surface. An atom probe chamber was modified to enable direct negative pulse application with controlled gas pressure, pulse repetition rate, and pulse amplitude. Through electrodynamical simulations, we show that the implantation energy falls within the range 100-1,000 eV and a theoretical depth of implantation was predicted and compared to experiments.

3.
Microsc Microanal ; 29(3): 1077-1086, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749678

RESUMO

Chemically resolved atomic resolution imaging can give fundamental information about material properties. However, even today, a technique capable of such achievement is still only an ambition. Here, we take further steps in developing the analytical field ion microscopy (aFIM), which combines the atomic spatial resolution of field ion microscopy (FIM) with the time-of-flight spectrometry of atom probe tomography (APT). To improve the performance of aFIM that are limited in part by a high level of background, we implement bespoke flight path time-of-flight corrections normalized by the ion flight distances traversed in electrostatic simulations modeled explicitly for an atom probe chamber. We demonstrate effective filtering in the field evaporation events upon spatially and temporally correlated multiples, increasing the mass spectrum's signal-to-background. In an analysis of pure tungsten, mass peaks pertaining to individual W isotopes can be distinguished and identified, with the signal-to-background improving by three orders of magnitude over the raw data. We also use these algorithms for the analysis of a CoTaB amorphous film to demonstrate application of aFIM beyond pure metals and binary alloys. These approaches facilitate elemental identification of the FIM-imaged surface atoms, making analytical FIM more precise and reliable.

4.
Microsc Microanal ; 29(3): 1124-1136, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749700

RESUMO

Atom probe tomography (APT) is a powerful three-dimensional nanoanalyzing microscopy technique considered key in modern materials science. However, progress in the spatial reconstruction of APT data has been rather limited since the first implementation of the protocol proposed by Bas et al. in 1995. This paper proposes a simple semianalytical approach to reconstruct multilayered structures, i.e., two or more different compounds stacked perpendicular to the analysis direction. Using a field evaporation model, the general dynamic evolution of parameters involved in the reconstruction of this type of structure is estimated. Some experimental reconstructions of different structures through the implementation of this method that dynamically accommodates variations in the tomographic reconstruction parameters are presented. It is shown both experimentally and theoretically that the depth accuracy of reconstructed APT images is improved using this method. The method requires few parameters in order to be easily usable and substantially improves atom probe tomographic reconstructions of multilayered structures.

5.
Microsc Microanal ; : 1-9, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474700

RESUMO

Three-dimensional field ion microscopy is a powerful technique to analyze material at a truly atomic scale. Most previous studies have been made on pure, crystalline materials such as tungsten or iron. In this article, we study more complex materials, and we present the first images of an amorphous sample, showing the capability to visualize the compositional fluctuations compatible with theoretical medium order in a metallic glass (FeBSi), which is extremely challenging to observe directly using other microscopy techniques. The intensity of the spots of the atoms at the moment of field evaporation in a field ion micrograph can be used as a proxy for identifying the elemental identity of the imaged atoms. By exploiting the elemental identification and positioning information from field ion images, we show the capability of this technique to provide imaging of recrystallized phases in the annealed sample with a superior spatial resolution compared with atom probe tomography.

6.
Microsc Microanal ; : 1-11, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34666868

RESUMO

Atom probe tomography (APT) is often introduced as providing "atomic-scale" mapping of the composition of materials and as such is often exploited to analyze atomic neighborhoods within a material. Yet quantifying the actual spatial performance of the technique in a general case remains challenging, as it depends on the material system being investigated as well as on the specimen's geometry. Here, by using comparisons with field-ion microscopy experiments, field-ion imaging and field evaporation simulations, we provide the basis for a critical reflection on the spatial performance of APT in the analysis of pure metals, low alloyed systems and concentrated solid solutions (i.e., akin to high-entropy alloys). The spatial resolution imposes strong limitations on the possible interpretation of measured atomic neighborhoods, and directional neighborhood analyses restricted to the depth are expected to be more robust. We hope this work gets the community to reflect on its practices, in the same way, it got us to reflect on our work.

7.
Microsc Microanal ; : 1-16, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34538293

RESUMO

A position and energy-sensitive detector has been developed for atom probe tomography (APT) instruments in order to deal with some mass peak overlap issues encountered in APT experiments. Through this new type of detector, quantitative and qualitative improvements could be considered for critical materials with mass peak overlaps, such as nitrogen and silicon in TiSiN systems, or titanium and carbon in cemented carbide materials. This new detector is based on a thin carbon foil positioned on the front panel of a conventional MCP-DLD detector. According to several studies, it has been demonstrated that the impact of ions on thin carbon foils has the effect of generating a number of transmitted and reflected secondary electrons. The number generated mainly depends on both the kinetic energy and the mass of incident particles. Despite the fact that this phenomenon is well known and has been widely discussed for decades, no studies have been performed to date for using it as a means to discriminate particles energy. Therefore, this study introduces the first experiments on a potential new generation of APT detectors that would be able to resolve mass peak overlaps through the energy-sensitivity of thin carbon foils.

8.
Microsc Microanal ; 27(2): 365-384, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33750488

RESUMO

This article presents a fast and highly efficient algorithm developed to reconstruct a three-dimensional (3D) volume with a high spatial precision from a set of field ion microscopy (FIM) images, and specific tools developed to characterize crystallographic lattice and defects. A set of FIM digital images and image processing algorithms allow the construction of a 3D reconstruction of the sample at the atomic scale. The capability of the 3D FIM to resolve the crystallographic lattice and the finest defects in metals opens a new way to analyze materials. This spatial precision was quantified on tungsten, analyzed at different analyzing conditions. A specific data mining tool, based on Fourier transforms, was also developed to characterize lattice distortions in the reconstructed volumes. This tool has been used in simulated and experimental volumes to successfully locate and characterize defects such as dislocations and grain boundaries.

9.
Nano Lett ; 20(12): 8733-8738, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236638

RESUMO

Atom Probe Tomography (APT) is a microscopy technique allowing for the 3D reconstruction of the chemical composition of a nanoscale needle-shaped sample with a precision close to the atomic scale. The photonic atom probe (PAP) is an evolution of APT featuring in situ and operando detection of the photoluminescence signal. The optical signatures of the light-emitting centers can be correlated with the structural and chemical information obtained by the analysis of the evaporated ions. It becomes thus possible to discriminate and interpret the spectral signatures of different light emitters as close as 20 nm, well beyond the resolution limit set by the exciting laser wavelength. This technique opens up new perspectives for the study of the physics of low dimensional systems, defects and optoelectronic devices.

10.
Microsc Microanal ; 26(6): 1133-1146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33176891

RESUMO

Atom probe tomography (APT) is particularly suited for the analysis of nanoscale microstructural features in metallic alloys. APT has become important in the quantitative assessment at high spatial resolution of light elements, which are notoriously difficult to analyze by electron- or X-ray-based techniques. These control the physical properties of high-strength materials and semiconductors. However, the mass spectrometer of state-of-the-art commercial atom probes with the highest spatial precision and detection efficiency are optimized for elements with mass-to-charge ratios corresponding to Fe and neighboring elements. Little is known on the theoretical performances for light elements. Here, we discuss the theoretical instrumental performance of one such instrument using accurate three-dimensional transient electrostatic simulations in a time-varying field approach. We compare the simulations to experimental measurements obtained on an FeBSi bulk-metallic glass. Dynamics effects during the ion's flight are revealed when examining multi-hit mass-to-charge correlations, and we demonstrate their influence on the mass resolution. The model reveals significant differences in ion projection as a function of the mass. We discuss how these chromatic aberrations affect the spatial precision. This approach shows that by tuning the shape of the voltage pulses used to trigger field evaporation, minimizing the influence of these detrimental dynamic effects is possible.

11.
Microsc Microanal ; 26(4): 689-698, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32627726

RESUMO

Atom probe tomography (APT) analysis conditions play a major role in the composition measurement accuracy. Preferential evaporation (PE), which significantly biases the apparent composition, more than other well-known phenomena in APT, is strongly connected to those analysis conditions. One way to optimize them, in order to have the most accurate measurement, is therefore to be able to predict and then to estimate their influence on the apparent composition. An analytical model is proposed to quantify the PE. This model is applied to three different alloys such as NiCu, FeCrNi, and FeCu. The model explains not only the analysis temperature dependence, as in an already existing model, but also the dependence to the pulse fraction and the pulse frequency. Moreover, the model can also provide an energetic constant directly linked to the energy barrier required to field evaporate atom from the sample surface.

12.
Microsc Microanal ; 25(2): 367-377, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30813977

RESUMO

This paper describes an alternative way to assign elemental identity to atoms collected by atom probe tomography (APT). This method is based on Bayesian assignation of label through the expectation-maximization method (well known in data analysis). Assuming the correct shape of mass over charge peaks in mass spectra, the probability of each atom to be labeled as a given element is determined, and is used to enhance data visualization and composition mapping in APT analyses. The method is particularly efficient for small count experiments with a low signal to noise ratio, and can be used on small subsets of analyzed volumes, and is complementary to single-ion decomposition methods. Based on the selected model and experimental examples, it is shown that the method enhances our ability to observe and extract information from the raw dataset. The experimental case of the superimposition of the Si peak and N peak in a steel is presented.

13.
Microsc Microanal ; 25(2): 389-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30722805

RESUMO

We introduce an efficient, automated computational approach for analyzing interfaces within atom probe tomography datasets, enabling quantitative mapping of their thickness, composition, as well as the Gibbsian interfacial excess of each solute. Detailed evaluation of an experimental dataset indicates that compared with the composition map, the interfacial excess map is more robust and exhibits a relatively higher resolution to reveal compositional variations. By field evaporation simulations with a predefined emitter mimicking the experimental dataset, the impact of trajectory aberrations on the measurement of the thickness, composition, and interfacial excess of the decorated interface are systematically analyzed and discussed.

16.
Nano Lett ; 17(7): 4261-4269, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28654283

RESUMO

The localization of carrier states in GaN/AlN self-assembled quantum dots (QDs) is studied by correlative multimicroscopy relying on microphotoluminescence, electron tomography, and atom probe tomography (APT). Optically active field emission tip specimens were prepared by focused ion beam from an epitaxial film containing a stack of quantum dot layers and analyzed with different techniques applied subsequently on the same tip. The transition energies of single QDs were calculated in the framework of a 6-bands k.p model on the basis of APT and scanning transmission electron microscopy characterization showing that a good agreement between experimental and calculated energies can be obtained, overcoming the limitations of both techniques. The results indicate that holes effectively localize at interface fluctuations at the bottom of the QD, decreasing the extent of the wave function and the band-to-band transition energy. They also represent an important step toward the correlation of the three-dimensional atomic scale structural information with the optical properties of single light emitters based on quantum confinement.

17.
Microsc Microanal ; 23(2): 247-254, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28327210

RESUMO

Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed. Simulations of field evaporation of bilayer were performed to evaluate the effectiveness of the new algorithm. Compared to the standard state-of-the-art reconstruction methods, the present approach provides much more accurate analyzed volume, and the resolution is clearly improved near the interface. The ability of the algorithm to handle experimental data was also demonstrated. It is shown that the standard algorithm applied to the same data can commit an error on the layers thicknesses up to a factor 2. This new method is not constrained by the classical hemispherical specimen shape assumption.

18.
Microsc Microanal ; 23(2): 210-220, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28337951

RESUMO

This article reviews recent advances utilizing field-ion microscopy (FIM) to extract atomic-scale three-dimensional images of materials. This capability is not new, as the first atomic-scale reconstructions of features utilizing FIM were demonstrated decades ago. The rise of atom probe tomography, and the application of this latter technique in place of FIM has unfortunately severely limited further FIM development. Currently, the ubiquitous availability of extensive computing power makes it possible to treat and reconstruct FIM data digitally and this development allows the image sequences obtained utilizing FIM to be extremely valuable for many material science and engineering applications. This article demonstrates different applications of these capabilities, focusing on its use in physical metallurgy and semiconductor science and technology.

19.
Microsc Microanal ; 23(2): 221-226, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28173892

RESUMO

Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

20.
Microsc Microanal ; 23(2): 366-375, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28132662

RESUMO

Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA