Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mol Biol ; 325(5): 827-41, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12527294

RESUMO

Bacteriophage T4 AsiA, a protein of 90 amino acid residues, binds to the sigma(70) subunit of Escherichia coli RNA polymerase and inhibits host or T4 early transcription or, together with the T4 MotA protein, activates T4 middle transcription. To investigate which regions within AsiA are involved in forming a complex with sigma(70) and in providing transcriptional functions we generated random mutations throughout AsiA and targeted mutations within the C-terminal region. We tested mutant proteins for their ability to complement the growth of T4 asiA am phage under non-suppressing conditions, to inhibit E. coli growth, to interact with sigma(70) region 4 in a two-hybrid assay, to bind to sigma(70) in a native protein gel, and to inhibit or activate transcription in vitro using a T4 middle promoter that is active with RNA polymerase alone, is inhibited by AsiA, and is activated by MotA/AsiA. We find that substitutions within the N-terminal half of AsiA, at amino acid residues V14, L18, and I40, rendered the protein defective for binding to sigma(70). These residues reside at the monomer-monomer interface in recent NMR structures of the AsiA dimer. In contrast, AsiA missing the C-terminal 44 amino acid residues interacted well with sigma(70) region 4 in the two-hybrid assay, and AsiA missing the C-terminal 17 amino acid residues (Delta74-90) bound to sigma(70) and was fully competent in standard in vitro transcription assays. However, the presence of the C-terminal region delayed formation of transcriptionally competent species when the AsiA/polymerase complex was pre-incubated with the promoter in the absence of MotA. Our results suggest that amino acid residues within the N-terminal half of AsiA are involved in forming or maintaining the AsiA/sigma(70) complex. The C-terminal region of AsiA, while not absolutely required for inhibition or co-activation, aids inhibition by slowing the formation of transcription complexes between a promoter and the AsiA/polymerase complex.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Bacteriófago T4/metabolismo , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/genética , Teste de Complementação Genética , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Fator sigma/antagonistas & inibidores , Fator sigma/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , beta-Galactosidase/metabolismo
2.
Proc Natl Acad Sci U S A ; 104(11): 4630-5, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17360575

RESUMO

Cells responding to dramatic environmental changes or undergoing a developmental switch typically change the expression of numerous genes. In bacteria, sigma factors regulate much of this process, whereas in eukaryotes, four RNA polymerases and a multiplicity of generalized transcription factors (GTFs) are required. Here, by using a systems approach, we provide experimental evidence (including protein-coimmunoprecipitation, ChIP-Chip, GTF perturbation and knockout, and measurement of transcriptional changes in these genetically perturbed strains) for how archaea likely accomplish similar large-scale transcriptional segregation and modulation of physiological functions. We are able to associate GTFs to nearly half of all putative promoters and show evidence for at least 7 of the possible 42 functional GTF pairs. This report represents a significant contribution toward closing the gap in our understanding of gene regulation by GTFs for all three domains of life and provides an example for how to use various experimental techniques to rapidly learn significant portions of a global gene regulatory network of organisms for which little has been previously known.


Assuntos
Regulação da Expressão Gênica , Fatores Genéricos de Transcrição/biossíntese , Animais , Archaea , Imunoprecipitação da Cromatina , Evolução Molecular , Redes Reguladoras de Genes , Técnicas Genéticas , Modelos Biológicos , Filogenia , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , RNA Mensageiro/metabolismo , Transcrição Gênica
3.
Cell ; 131(7): 1354-65, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-18160043

RESUMO

The environment significantly influences the dynamic expression and assembly of all components encoded in the genome of an organism into functional biological networks. We have constructed a model for this process in Halobacterium salinarum NRC-1 through the data-driven discovery of regulatory and functional interrelationships among approximately 80% of its genes and key abiotic factors in its hypersaline environment. Using relative changes in 72 transcription factors and 9 environmental factors (EFs) this model accurately predicts dynamic transcriptional responses of all these genes in 147 newly collected experiments representing completely novel genetic backgrounds and environments-suggesting a remarkable degree of network completeness. Using this model we have constructed and tested hypotheses critical to this organism's interaction with its changing hypersaline environment. This study supports the claim that the high degree of connectivity within biological and EF networks will enable the construction of similar models for any organism from relatively modest numbers of experiments.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica em Archaea , Redes Reguladoras de Genes , Halobacterium salinarum/genética , Modelos Genéticos , Cloreto de Sódio/metabolismo , Transcrição Gênica , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bases de Dados Genéticas , Meio Ambiente , Halobacterium salinarum/crescimento & desenvolvimento , Halobacterium salinarum/metabolismo , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Biologia de Sistemas , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Microbiology (Reading) ; 151(Pt 6): 1729-1740, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15941982

RESUMO

Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with the sigma(70) specificity subunit of Escherichia coli RNA polymerase, which normally contacts the -10 and -35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonical sigma(70) DNA element located in the -10 region. However, instead of the sigma(70) DNA recognition element in the promoter's -35 region, they have a 9 bp sequence (a MotA box) centred at -30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein-DNA contacts in the upstream promoter sequences, without significantly affecting the contacts of sigma(70) with the -10 region. This type of activation, which is called 'sigma appropriation', is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to force sigma(70) to contact a less than ideal -35 DNA element. This review summarizes the interactions of AsiA and MotA with sigma(70), and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region of sigma(70), region 4, with the host -35 DNA element and with other subunits of polymerase.


Assuntos
Proteínas de Ligação a DNA/fisiologia , RNA Polimerases Dirigidas por DNA/fisiologia , Escherichia coli/virologia , Fator sigma/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas Virais/fisiologia , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA