Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Neurosci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926089

RESUMO

N-methyl-D-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de-novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons prepared from L825V/+ compared to +/+ mice. Peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSC) was not changed, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared to +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared to wild-type GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.Significance statement Variants in genes for subunits of N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptors, are associated with neurodevelopmental disorders. Here we have generated a transgenic mouse model of a de-novo missense GRIN2B gene variant, identified in a patient with intellectual disability and autism, that introduces a single amino acid substitution (L825V) in the NMDAR GluN2B subunit. Di- and triheteromeric NMDARs containing the GluN2B(L825V) subunit have a reduced channel open probability. Synaptic NMDAR currents in neurons from heterozygous L825V/+ mice have accelerated deactivation and reduced ifenprodil sensitivity, suggesting synaptic loss of GluN2B function. L825V/+ mice show increased anxiety, impaired sensorimotor gating, and cognitive deficits, consistent with patient symptoms. Our study describes a clinically relevant mouse model of GRIN2B-related neurodevelopmental pathology.

2.
Cell Mol Life Sci ; 81(1): 36, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214768

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.


Assuntos
Neuroesteroides , Receptores de N-Metil-D-Aspartato , Humanos , Fenômenos Eletrofisiológicos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
J Neurosci ; 41(10): 2119-2134, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33526476

RESUMO

NMDARs are ligand-gated ion channels that cause an influx of Na+ and Ca2+ into postsynaptic neurons. The resulting intracellular Ca2+ transient triggers synaptic plasticity. When prolonged, it may induce excitotoxicity, but it may also activate negative feedback to control the activity of NMDARs. Here, we report that a transient rise in intracellular Ca2+ (Ca2+ challenge) increases the sensitivity of NMDARs but not AMPARs/kainate receptors to the endogenous inhibitory neurosteroid 20-oxo-5ß-pregnan-3α-yl 3-sulfate and to its synthetic analogs, such as 20-oxo-5ß-pregnan-3α-yl 3-hemipimelate (PAhPim). In cultured hippocampal neurons, 30 µm PAhPim had virtually no effect on NMDAR responses; however, following the Ca2+ challenge, it inhibited the responses by 62%; similarly, the Ca2+ challenge induced a 3.7-fold decrease in the steroid IC50 on recombinant GluN1/GluN2B receptors. The increase in the NMDAR sensitivity to PAhPim was dependent on three cysteines (C849, C854, and C871) located in the carboxy-terminal domain of the GluN2B subunit, previously identified to be palmitoylated (Hayashi et al., 2009). Our experiments suggested that the Ca2+ challenge induced receptor depalmitoylation, and single-channel analysis revealed that this was accompanied by a 55% reduction in the probability of channel opening. Results of in silico modeling indicate that receptor palmitoylation promotes anchoring of the GluN2B subunit carboxy-terminal domain to the plasma membrane and facilitates channel opening. Depalmitoylation-induced changes in the NMDAR pharmacology explain the neuroprotective effect of PAhPim on NMDA-induced excitotoxicity. We propose that palmitoylation-dependent changes in the NMDAR sensitivity to steroids serve as an acute endogenous mechanism that controls NMDAR activity.SIGNIFICANCE STATEMENT There is considerable interest in negative allosteric modulators of NMDARs that could compensate for receptor overactivation by glutamate or de novo gain-of-function mutations in neurodevelopmental disorders. By a combination of electrophysiological, pharmacological, and computational techniques we describe a novel feedback mechanism regulating NMDAR activity. We find that a transient rise in intracellular Ca2+ increases NMDAR sensitivity to inhibitory neurosteroids in a process dependent on GluN2B subunit depalmitoylation. These results improve our understanding of the molecular mechanisms of steroid action at the NMDAR and indeed of the basic properties of this important glutamate-gated ion channel and may aid in the development of therapeutics for treating neurologic and psychiatric diseases related to overactivation of NMDARs without affecting normal physiological functions.


Assuntos
Lipoilação/fisiologia , Neuroproteção/fisiologia , Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células HEK293 , Hipocampo/fisiologia , Humanos , Lipoilação/efeitos dos fármacos , Masculino , Pregnanos/metabolismo , Ratos , Ratos Wistar
4.
J Neurosci ; 40(31): 5922-5936, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32611707

RESUMO

N-methyl-D-aspartate receptor (NMDAR) hypofunction has been implicated in several neurodevelopmental disorders. NMDAR function can be augmented by positive allosteric modulators, including endogenous compounds, such as cholesterol and neurosteroid pregnenolone sulfate (PES). Here we report that PES accesses the receptor via the membrane, and its binding site is different from that of cholesterol. Alanine mutagenesis has identified residues that disrupt the steroid potentiating effect at the rat GluN1 (G638; I642) and GluN2B (W559; M562; Y823; M824) subunit. Molecular dynamics simulation indicates that, in the absence of PES, the GluN2B M1 helix residue W559 interacts with the M4 helix residue M824. In the presence of PES, the M1 and M4 helices of agonist-activated receptor rearrange, forming a tighter interaction with the GluN1 M3 helix residues G638 and I642. This stabilizes the open-state position of the GluN1 M3 helices. Together, our data identify a likely binding site for the NMDAR-positive allosteric modulator PES and describe a novel molecular mechanism by which NMDAR activity can be augmented.SIGNIFICANCE STATEMENT There is considerable interest in drugs that enhance NMDAR function and could compensate for receptor hypofunction associated with certain neuropsychiatric disorders. Positive allosteric modulators of NMDARs include an endogenous neurosteroid pregnenolone sulfate (PES), but the binding site of PES on the NMDAR and the molecular mechanism of potentiation are unknown. We use patch-clamp electrophysiology in combination with mutagenesis and in silico modeling to describe the interaction of PES with the NMDAR. Our data indicate that PES binds to the transmembrane domain of the receptor at a discrete group of residues at the GluN2B membrane helices M1 and M4 and the GluN1 helix M3, and that PES potentiates NMDAR function by stabilizing the open-state position of the GluN1 M3 helices.


Assuntos
Pregnenolona/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Alanina/genética , Animais , Sítios de Ligação , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Ratos
5.
J Neurosci ; 36(7): 2161-75, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888927

RESUMO

Postsynaptic N-methyl-d-aspartate receptors (NMDARs) phasically activated by presynaptically released glutamate are critical for synaptic transmission and plasticity. However, under pathological conditions, excessive activation of NMDARs by tonically increased ambient glutamate contributes to excitotoxicity associated with various acute and chronic neurological disorders. Here, using heterologously expressed GluN1/GluN2A and GluN1/GluN2B receptors and rat autaptic hippocampal microisland cultures, we show that pregnanolone sulfate inhibits NMDAR currents induced by a prolonged glutamate application with a higher potency than the NMDAR component of EPSCs. For synthetic pregnanolone derivatives substituted with a carboxylic acid moiety at the end of an aliphatic chain of varying length and attached to the steroid skeleton at C3, the difference in potency between tonic and phasic inhibition increased with the length of the residue. The steroid with the longest substituent, pregnanolone hemipimelate, had no effect on phasically activated receptors while inhibiting tonically activated receptors. In behavioral tests, pregnanolone hemipimelate showed neuroprotective activity without psychomimetic symptoms. These results provide insight into the influence of steroids on neuronal function and stress their potential use in the development of novel therapeutics with neuroprotective action. SIGNIFICANCE STATEMENT: Synaptic activation of N-methyl-d-aspartate receptors (NMDARs) plays a key role in synaptic plasticity, but excessive tonic NMDAR activation mediates excitotoxicity associated with many neurological disorders. Therefore, there is much interest in pharmacological agents capable of selectively blocking tonically activated NMDARs while leaving synaptically activated NMDARs intact. Here, we show that an endogenous neurosteroid pregnanolone sulfate is more potent at inhibiting tonically than synaptically activated NMDARs. Further, we report that a novel synthetic analog of pregnanolone sulfate, pregnanolone hemipimelate, inhibits tonic NMDAR currents without inhibiting the NMDAR component of the EPSC and shows neuroprotective activity in vivo without inducing psychomimetic side effects. These results suggest steroids may have a clinical advantage over other known classes of NMDAR inhibitors.


Assuntos
Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Técnicas de Patch-Clamp , Pregnanos/química , Pregnanolona/química , Pregnanolona/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos
6.
J Neurochem ; 138(4): 546-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216994

RESUMO

In mammals, excitatory synapses contain two major types of ionotropic glutamate receptors: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors (NMDARs). Both receptor types are comprised of several subunits that are post-translationally modified by N-glycosylation. However, the precise N-glycans that are attached to these receptor types are largely unknown. Here, we used biochemistry to confirm that native NMDARs are extensively N-glycosylated; moreover, we found that the NMDAR GluN2B subunit differs from GluN1 subunits with respect to endoglycosidase H sensitivity. Next, we used a complete panel of lectins to determine the glycan composition of NMDARs in both cerebellar tissue and cultured cerebellar granule cells. Our experiments identified 23 lectins that pulled down both the GluN1 and GluN2B NMDAR subunits. We then performed an electrophysiological analysis using representative lectins and found that pre-incubating cerebellar granule cells with the AAL, WGA, or ConA alters the receptor's biophysical properties; this lectin-mediated effect was eliminated when the cells were deglycosylated with peptide-N-glycosidase F. Similar lectin-mediated effects were observed using HEK293 cells that express recombinant GluN1/GluN2B receptors. Finally, using mutant recombinant GluN subunits expressed in HEK293 cells, we found that 11 out of 12 predicted N-glycosylation sites in GluN1 and 7 out of 7 N-glycosylation sites in GluN2B are occupied by N-glycans. These data provide new insight into the role that N-glycosylation plays in regulating the function of NMDA receptors in the central nervous system. All animal experiments were performed in accordance with relevant institutional ethics guidelines and regulations with respect to protecting animal welfare. We examined the N-glycan composition of NMDA receptors (NMDARs) using deglycosylating enzymes, lectin-based biochemistry, and electrophysiology. Our results revealed that cerebellar NMDARs associate with 23 different lectins that have unique specificities for glycan structures. Furthermore, we found that 11 out of 12 predicted N-glycosylation sites in GluN1 and 7 out of 7 N-glycosylation sites in GluN2B are occupied by N-glycans. These data shed light on the glycan composition of NMDARs, revealing potential targets for the development of novel therapeutic approaches.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Neurônios/metabolismo , Polissacarídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Ratos , Transdução de Sinais/fisiologia
7.
J Physiol ; 593(10): 2279-93, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25651798

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate excitatory neurotransmission in the CNS. Although these receptors are in direct contact with plasma membrane, lipid-NMDAR interactions are little understood. In the present study, we aimed at characterizing the effect of cholesterol on the ionotropic glutamate receptors. Whole-cell current responses induced by fast application of NMDA in cultured rat cerebellar granule cells (CGCs) were almost abolished (reduced to 3%) and the relative degree of receptor desensitization was increased (by seven-fold) after acute cholesterol depletion by methyl-ß-cyclodextrin. Both of these effects were fully reversible by cholesterol repletion. By contrast, the responses mediated by AMPA/kainate receptors were not affected by cholesterol depletion. Similar results were obtained in CGCs after chronic inhibition of cholesterol biosynthesis by simvastatin and acute enzymatic cholesterol degradation to 4-cholesten-3-one by cholesterol oxidase. Fluorescence anisotropy measurements showed that membrane fluidity increased after methyl-ß-cyclodextrin pretreatment. However, no change in fluidity was observed after cholesterol enzymatic degradation, suggesting that the effect of cholesterol on NMDARs is not mediated by changes in membrane fluidity. Our data show that diminution of NMDAR responses by cholesterol depletion is the result of a reduction of the open probability, whereas the increase in receptor desensitization is the result of an increase in the rate constant of entry into the desensitized state. Surface NMDAR population, agonist affinity, single-channel conductance and open time were not altered in cholesterol-depleted CGCs. The results of our experiments show that cholesterol is a strong endogenous modulator of NMDARs.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Colesterol Oxidase/farmacologia , Colesterol/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Sinvastatina/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Colesterol/deficiência , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Masculino , Fluidez de Membrana/efeitos dos fármacos , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/fisiologia , Condução Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia , beta-Ciclodextrinas/farmacologia
8.
Methods Mol Biol ; 2799: 29-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727901

RESUMO

The expression and activity of ionotropic glutamate receptors control signal transduction at the excitatory synapses in the CNS. The NMDAR comprises two obligatory GluN1 subunits and two GluN2 or GluN3 subunits in different combinations. Each GluN subunit consists of four domains: the extracellular amino-terminal and agonist-binding domains, the transmembrane domain, and the intracellular C-terminal domain (CTD). The CTD interaction with various classes of intracellular proteins is critical for trafficking and synaptic localization of NMDARs. Amino acid mutations or the inclusion of premature stop codons in the CTD could contribute to the emergence of neurodevelopmental and neuropsychiatric disorders. Here, we describe the method of preparing primary hippocampal neurons and lentiviral particles expressing GluN subunits that can be used as a model to study cell surface expression and synaptic localization of NMDARs. We also show a simple method of fluorescence immunostaining of eGFP-tagged GluN2 subunits and subsequent microscopy technique and image analysis to study the effects of disease-associated mutations in the CTDs of GluN2A and GluN2B subunits.


Assuntos
Hipocampo , Neurônios , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Hipocampo/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Animais , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Células Cultivadas , Ratos , Humanos , Lentivirus/genética , Cultura Primária de Células/métodos , Expressão Gênica
9.
J Biol Chem ; 287(31): 26423-34, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22711533

RESUMO

N-methyl-d-aspartate (NMDA) receptors are glutamate ionotropic receptors that play critical roles in synaptic transmission, plasticity, and excitotoxicity. The functional NMDA receptors, heterotetramers composed mainly of two NR1 and two NR2 subunits, likely pass endoplasmic reticulum quality control before they are released from the endoplasmic reticulum and trafficked to the cell surface. However, the mechanism underlying this process is not clear. Using truncated and mutated NMDA receptor subunits expressed in heterologous cells, we found that the M3 domains of both NR1 and NR2 subunits contain key amino acid residues that contribute to the regulation of the number of surface functional NMDA receptors. These key residues are critical neither for the interaction between the NR1 and NR2 subunits nor for the formation of the functional receptors, but rather they regulate the early trafficking of the receptors. We also found that the identified key amino acid residues within both NR1 and NR2 M3 domains contribute to the regulation of the surface expression of unassembled NR1 and NR2 subunits. Thus, our data identify the unique role of the membrane domains in the regulation of the number of surface NMDA receptors.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
ACS Chem Neurosci ; 14(10): 1870-1883, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37126803

RESUMO

Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5ß-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5ß-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5ß-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5ß-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.


Assuntos
Pregnanolona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Pregnanolona/farmacologia , Pregnanolona/química , Peixe-Zebra , Ácido Glutâmico , Ésteres , Ácido gama-Aminobutírico , Receptores de GABA-A
11.
J Neurochem ; 123(3): 385-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22937865

RESUMO

N-methyl-D-aspartate (NMDA) receptors are glutamate ion channels that are critically involved in excitatory synaptic transmission and plasticity. The functional NMDA receptor is a heterotetramer composed mainly of GluN1 and GluN2 subunits. It is generally thought that only correctly assembled NMDA receptors can pass the quality control checkpoint in the endoplasmic reticulum (ER) and are transported to the cell surface membranes. The molecular mechanisms underlying these processes remain poorly understood. Using chimeric and mutated GluN1 subunits expressed in heterologous cells, we identified a single amino acid residue within the fourth membrane domain (M4) of GluN1 subunit, L830, that regulates the surface number of NMDA receptors. Our experiments show that this residue is not critical for the interaction between GluN1 and GluN2 subunits or for the formation of functional receptors, but rather that it regulates the forward trafficking of the NMDA receptors. The surface expression of both GluN2A- and GluN2B-containing receptors is regulated by the L830 residue in a similar manner. We also found that the L830 residue is not involved in the trafficking of individually expressed GluN1 subunits. Our data reveal a critical role of the single amino acid residue within the GluN1 M4 domain in the surface delivery of functional NMDA receptors.


Assuntos
Transporte Proteico/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Aminoácidos/genética , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutagênese/fisiologia , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptores de Superfície Celular/genética , Receptores de N-Metil-D-Aspartato/genética
12.
Br J Pharmacol ; 179(15): 3970-3990, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35318645

RESUMO

BACKGROUND AND PURPOSE: N-methyl-D-aspartate receptors (NMDARs) play a critical role in synaptic plasticity, and mutations in human genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. Compounds with a positive allosteric effect are thought to compensate for reduced receptor function. EXPERIMENTAL APPROACH: We have used whole-cell patch-clamp electrophysiology on recombinant rat NMDARs and human variants found in individuals with neuropsychiatric disorders, in combination with in silico modelling, to explore the site of action of novel epipregnanolone-based NMDAR modulators. KEY RESULTS: Analysis of the action of 4-(20-oxo-5ß-pregnan-3ß-yl) butanoic acid (EPA-But) at the NMDAR indicates that the effect of this steroid with a "bent" structure is different from that of cholesterol and oxysterols and shares a disuse-dependent mechanism of NMDAR potentiation with the "planar" steroid 20-oxo-pregn-5-en-3ß-yl sulfate (PE-S). The potentiating effects of EPA-But and PE-S are additive. Alanine scan mutagenesis identified residues that reduce the potentiating effect of EPA-But. No correlation was found between the effects of EPA-But and PE-S at mutated receptors that were less sensitive to either steroid. The relative degree of potentiation induced by the two steroids also differed in human NMDARs carrying rare variants of hGluN1 or hGluN2B subunits found in individuals with neuropsychiatric disorders, including intellectual disability, epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION AND IMPLICATIONS: Our results show novel sites of action for pregnanolones at the NMDAR and provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with glutamatergic system hypofunction.


Assuntos
Transtorno do Espectro Autista , Receptores de N-Metil-D-Aspartato , Animais , Mutação , Pregnanos/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Esteroides
13.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519023

RESUMO

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Assuntos
Comportamento Animal , Drogas Ilícitas , Ketamina , Locomoção , Animais , Comportamento Animal/efeitos dos fármacos , Drogas Ilícitas/efeitos adversos , Drogas Ilícitas/farmacocinética , Drogas Ilícitas/farmacologia , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Ketamina/análogos & derivados , Ketamina/farmacocinética , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
14.
J Pers Med ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945722

RESUMO

The heritable component of schizophrenia (SCH) as a polygenic trait is represented by numerous variants from a heterogeneous group of genes each contributing a relatively small effect. Various SNPs have already been found and analyzed in genes encoding the NMDAR subunits. However, less is known about genetic variations of genes encoding the AMPA and kainate receptor subunits. We analyzed sixteen iGluR genes in full length to determine the sequence variability of iGluR genes. Our aim was to describe the rate of genetic variability, its distribution, and the co-occurrence of variants and to identify new candidate risk variants or haplotypes. The cumulative effect of genetic risk was then estimated using a simple scoring model. GRIN2A-B, GRIN3A-B, and GRIK4 genes showed significantly increased genetic variation in SCH patients. The fixation index statistic revealed eight intronic haplotypes and an additional four intronic SNPs within the sequences of iGluR genes associated with SCH (p < 0.05). The haplotypes were used in the proposed simple scoring model and moreover as a test for genetic predisposition to schizophrenia. The positive likelihood ratio for the scoring model test reached 7.11. We also observed 41 protein-altering variants (38 missense variants, four frameshifts, and one nonsense variant) that were not significantly associated with SCH. Our data suggest that some intronic regulatory regions of iGluR genes and their common variability are among the components from which the genetic predisposition to SCH is composed.

15.
Biomolecules ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356650

RESUMO

Evidence from clinical and preclinical studies implicates dysfunction of N-methyl-D-aspartate receptors (NMDARs) in schizophrenia progression and symptoms. We investigated the antipsychotic effect of two neuroactive steroids in an animal model of schizophrenia induced by systemic application of MK-801. The neuroactive steroids differ in their mechanism of action at NMDARs. MS-249 is positive, while PA-Glu is a negative allosteric NMDAR modulator. We hypothesized that the positive NMDA receptor modulator would attenuate deficits caused by MK-801 co-application more effectively than PA-Glu. The rats were tested in a battery of tests assessing spontaneous locomotion, anxiety and cognition. Contrary to our expectations, PA-Glu exhibited a superior antipsychotic effect to MS-249. The performance of MS-249-treated rats in cognitive tests differed depending on the level of stress the rats were exposed to during test sessions. In particular, with the increasing severity of stress exposure, the performance of animals worsened. Our results demonstrate that enhancement of NMDAR function may result in unspecific behavioral responses. Positive NMDAR modulation can influence other neurobiological processes besides memory formation, such as anxiety and response to stress.


Assuntos
Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Esteroides/farmacologia , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Células HEK293 , Humanos , Masculino , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Ratos Long-Evans , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/metabolismo
16.
Br J Pharmacol ; 178(19): 3888-3904, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33988248

RESUMO

BACKGROUND AND PURPOSE: Neurosteroids influence neuronal function and have multiple promising clinical applications. Direct modulation of postsynaptic neurotransmitter receptors by neurosteroids is well characterized, but presynaptic effects remain poorly understood. Here, we report presynaptic glutamate release potentiation by neurosteroids pregnanolone and pregnanolone sulfate and compare their mechanisms of action to phorbol 12,13-dibutyrate (PDBu), a mimic of the second messenger DAG. EXPERIMENTAL APPROACH: We use whole-cell patch-clamp electrophysiology and pharmacology in rat hippocampal microisland cultures and total internal reflection fluorescence (TIRF) microscopy in HEK293 cells expressing GFP-tagged vesicle priming protein Munc13-1, to explore the mechanisms of neurosteroid presynaptic modulation. KEY RESULTS: Pregnanolone sulfate and pregnanolone potentiate glutamate release downstream of presynaptic Ca2+ influx, resembling the action of a phorbol ester PDBu. PDBu partially occludes the effect of pregnanolone, but not of pregnanolone sulfate. Calphostin C, an inhibitor that disrupts DAG binding to its targets, reduces the effect PDBu and pregnanolone, but not of pregnanolone sulfate, suggesting that pregnanolone might interact with a well-known DAG/phorbol ester target Munc13-1. However, TIRF microscopy experiments found no evidence of pregnanolone-induced membrane translocation of GFP-tagged Munc13-1, suggesting that pregnanolone may regulate Munc13-1 indirectly or interact with other DAG targets. CONCLUSION AND IMPLICATIONS: We describe a novel presynaptic effect of neurosteroids pregnanolone and pregnanolone sulfate to potentiate glutamate release downstream of presynaptic Ca2+ influx. The mechanism of action of pregnanolone, but not of pregnanolone sulfate, partly overlaps with that of PDBu. Presynaptic effects of neurosteroids may contribute to their therapeutic potential in the treatment of disorders of the glutamate system.


Assuntos
Neuroesteroides , Pregnanolona , Animais , Ácido Glutâmico , Células HEK293 , Humanos , Pregnanolona/farmacologia , Ratos , Sulfatos
17.
Sci Rep ; 10(1): 12651, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724221

RESUMO

Cholesterol is a structural component of cellular membranes particularly enriched in synapses but its role in synaptic transmission remains poorly understood. We used rat hippocampal cultures and their acute cholesterol depletion by methyl-ß-cyclodextrin as a tool to describe the physiological role of cholesterol in glutamatergic synaptic transmission. Cholesterol proved to be a key molecule for the function of synapses as its depletion resulted in a significant reduction of both NMDA receptor (NMDAR) and AMPA/kainate receptor-mediated evoked excitatory postsynaptic currents (eEPSCs), by 94% and 72%, respectively. We identified two presynaptic and two postsynaptic steps of synaptic transmission which are modulated by cholesterol and explain together the above-mentioned reduction of eEPSCs. In the postsynapse, we show that physiological levels of cholesterol are important for maintaining the normal probability of opening of NMDARs and for keeping NMDARs localized in synapses. In the presynapse, our results favour the hypothesis of a role of cholesterol in the propagation of axonal action potentials. Finally, cholesterol is a negative modulator of spontaneous presynaptic glutamate release. Our study identifies cholesterol as an important endogenous regulator of synaptic transmission and provides insight into molecular mechanisms underlying the neurological manifestation of diseases associated with impaired cholesterol synthesis or decomposition.


Assuntos
Colesterol/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
18.
Steroids ; 74(2): 256-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19071149

RESUMO

The synthesis of several novel 5alpha- and 5beta-20-oxo-pregnane derivatives substituted in the position 3 and 7 of the steroid skeleton is described. Activity of synthesized compounds was studied in voltage-clamped cultured rat hippocampal neurons. Substituted derivatives inhibited NMDA-elicited neuronal activity. The relationship between biological activity and structure is discussed.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , Pregnanos/síntese química , Pregnanos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Células Cultivadas , Condutividade Elétrica , Concentração Inibidora 50 , Neurônios/metabolismo , Técnicas de Patch-Clamp , Pregnanos/química , Ratos
19.
Biomolecules ; 9(10)2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569344

RESUMO

We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.


Assuntos
Simulação de Dinâmica Molecular , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ratos
20.
J Neurosci ; 27(28): 7578-85, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17626219

RESUMO

The transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific nonselective cation channel that is gated in response to various noxious stimuli: pungent vanilloids, low pH, noxious heat, and depolarizing voltages. By its analogy to K+ channels, the S6 inner helix domain of TRPV1 (Y666-G683) is a prime candidate to form the most constricted region of the permeation pathway and might therefore encompass an as-yet-unmapped gate of the channel. Using alanine-scanning mutagenesis, we identified 16 of 17 residues, that when mutated affected the functionality of the TRPV1 channel with respect to at least one stimulus modality. T670A was the only substitution producing the wild-type channel phenotype, whereas Y666A and N676A were nonfunctional but present at the plasma membrane. The periodicity of the functional effects of mutations within the TRPV1 inner pore region is consistent with an alpha-helical structure in which T670 and A680 might play the roles of two bending "hinges."


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/fisiologia , Alanina , Animais , Capsaicina/farmacologia , Linhagem Celular , Eletrofisiologia , Temperatura Alta , Humanos , Potenciais da Membrana , Mutagênese Sítio-Dirigida , Mutação , Ratos , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA