Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2122677119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881795

RESUMO

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.


Assuntos
Materiais Biomiméticos , Coenzimas , Hidrocarbonetos , Ferro , Nitrogenase , Enxofre , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Coenzimas/síntese química , Coenzimas/química , Hidrocarbonetos/síntese química , Hidrocarbonetos/química , Ferro/química , Nitrogenase/química , Oxirredução , Enxofre/química
2.
Chemistry ; 30(20): e202303848, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312108

RESUMO

A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,ß-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.

3.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416412

RESUMO

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

4.
Angew Chem Int Ed Engl ; 62(13): e202217534, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36645673

RESUMO

Phosphane, PH3 -a highly pyrophoric and toxic gas-is frequently contaminated with H2 and P2 H4 , which makes its handling even more dangerous. The inexpensive metal-organic framework (MOF) magnesium formate, α-[Mg(O2 CH)2 ], can adsorb up to 10 wt % of PH3 . The PH3 -loaded MOF, PH3 @α-[Mg(O2 CH)2 ], is a non-pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α-[Mg(O2 CH)2 ] further plays a critical role in purifying PH3 from H2 and P2 H4 : at 25 °C, H2 passes through the MOF channels without adsorption, whereas PH3 adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2 H4 , is strongly adsorbed and trapped within the MOF for at least 4 months. P2 H4 @α-[Mg(O2 CH)2 ] itself is not pyrophoric and is air- and light-stable at room temperature.

5.
J Am Chem Soc ; 144(13): 5864-5870, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319205

RESUMO

Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, ηPL, and shorter fluorescence lifetimes, τPL. The formation of multiple phases containing mixed interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of perovskite NCs.

6.
Chemistry ; 28(47): e202201522, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35652608

RESUMO

We report here a mechanistic, DFT and catalytic study on a series of Mn(I) complexes 1, 2(a-d), 3, 4. The studies apprehended the requirements for Mn(I) complexes to be active in both asymmetric direct (AH) and transfer hydrogenations (ATH). The investigations disclosed 6 vital factors accelerating the formation of a resting species, which plays a significant role in lowering the activities of the Mn(I) complex 1 in ATH and AH, respectively. In addition, we also report here a base free Mn(I) catalyzed ATH of aryl alkyl ketones with high enantioselectivity (up to 98 % ee) and improved activity. More significantly, a novel and simple single-step process for recycling the resting species from the catalytic leftover has been discovered. Notably, the studies provide evidence for the existence of two different temperature dependent mechanisms for AH and ATH, in contrast to previous studies on related systems.


Assuntos
Cetonas , Catálise , Hidrogenação
7.
Chemistry ; 27(11): 3700-3707, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32914915

RESUMO

Several amines with three bulky alkyl groups at the nitrogen atom, which exceed the steric crowding of triisopropylamine significantly, were synthesized, mainly by treating N-chlorodialkylamines with Grignard reagents. In six cases, namely tert-butyldiisopropylamine, 1-adamantyl-tert-butylisopropylamine, di-1-adamantylamines with an additional N-cyclohexyl or N-exo-2-norbonyl substituent, as well as 2,2,6,6-tetramethylpiperidine derivatives with N-cyclohexyl or N-neopentyl groups, appropriate single crystals were generated that enabled X-ray diffraction studies and analysis of the molecular structures. The four noncyclic amines adopt triskele-like conformations, and the sum of the three C-N-C angles is always in the range of 351.1° to 352.4°. Consequently, these amines proved to be structurally significantly flatter than trialkylamines without steric congestion, which is also signalized by the smaller heights of the NC3 pyramids (0.241-0.259 Å). There is no clear correlation between the heights of these pyramids and the degree of the steric crowding in the new amines, presumably because steric repulsion is partly compensated by dispersion interaction. In the cases of the two heterocyclic amines, the steric stress is smaller, and the molecular structures include quite different conformations. Quantum chemical calculations led to precise gas-phase structures of the sterically overcrowded trialkylamines exhibiting heights of the NC3 pyramids and preferred molecular conformers which are similar to those resulting from the X-ray studies.

8.
Angew Chem Int Ed Engl ; 60(48): 25372-25380, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34510678

RESUMO

The nitrogen oxides NO2 , NO, and N2 O are among the most potent air pollutants of the 21st century. A bimetallic RhI -PtII complex containing an especially designed multidentate phosphine olefin ligand is capable of catalytically detoxifying these nitrogen oxides in the presence of hydrogen to form water and dinitrogen as benign products. The catalytic reactions were performed at room temperature and low pressures (3-4 bar for combined nitrogen oxides and hydrogen gases). A turnover number (TON) of 587 for the reduction of nitrous oxide (N2 O) to water and N2 was recorded, making these RhI -PtII complexes the best homogeneous catalysts for this reaction to date. Lower TONs were achieved in the conversion of nitric oxide (NO, TON=38) or nitrogen dioxide (NO2 , TON of 8). These unprecedented homogeneously catalyzed hydrogenation reactions of NOx were investigated by a combination of multinuclear NMR techniques and DFT calculations, which provide insight into a possible reaction mechanism. The hydrogenation of NO2 proceeds stepwise, to first give NO and H2 O, followed by the generation of N2 O and H2 O, which is then further converted to N2 and H2 O. The nitrogen-nitrogen bond-forming step takes place in the conversion from NO to N2 O and involves reductive dimerization of NO at a rhodium center to give a hyponitrite (N2 O2 2- ) complex, which was detected as an intermediate.

9.
Angew Chem Int Ed Engl ; 59(34): 14490-14497, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32472624

RESUMO

Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.

10.
Angew Chem Int Ed Engl ; 58(52): 19007-19013, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31574198

RESUMO

The lithiacarborane [Li-CB11 H11 ]- plays a central role in carborane chemistry, as it is a key intermediate to achieve the selective functionalization of the monocarba-closo-dodecaborate [CB11 H12 ]- for applications in various fields. Also, it is an organometallic species of fundamental interest because it represents a 3D analogue of phenyllithium featuring an exo C-Li bond in addition to the delocalized negative endo charge of the spherical cluster. For the first time, the elusive and highly reactive endo/exo formal dianion [CB11 H11 ]2- has been isolated as its lithiate as well as zincate in pure form and fully characterized. DFT calculations corroborate the experimental findings and underscore the remarkably high reactivity of the lithiacarborane. Subsequent derivatizations demonstrate the relevance of its initial clean formation.

11.
Angew Chem Int Ed Engl ; 58(29): 9841-9845, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31069914

RESUMO

Monomeric CuII sites supported on alumina, prepared using surface organometallic chemistry, convert CH4 to CH3 OH selectively. This reaction takes place by formation of CH3 O surface species with the concomitant reduction of two monomeric CuII sites to CuI , according to mass balance analysis, infrared, solid-state nuclear magnetic resonance, X-ray absorption, and electron paramagnetic resonance spectroscopy studies. This material contains a significant fraction of Cu active sites (22 %) and displays a selectivity for CH3 OH exceeding 83 %, based on the number of electrons involved in the transformation. These alumina-supported CuII sites reveal that C-H bond activation, along with the formation of CH3 O- surface species, can occur on pairs of proximal monomeric CuII sites in a short reaction time.

12.
J Am Chem Soc ; 140(11): 3850-3853, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29502407

RESUMO

Two-dimensional hybrid organic-inorganic lead halides perovskite-type compounds have attracted immense scientific interest due to their remarkable optoelectronic properties and tailorable crystal structures. In this work, we present a new layered hybrid lead halide, namely [CH(NH2)2][C(NH2)3]PbI4, wherein puckered lead-iodide layers are separated by two small and stable organic cations: formamidinium, CH(NH2)2+, and guanidinium, C(NH2)3+. This perovskite is thermally stable up to 255 °C, exhibits room-temperature photoluminescence in the red region with a quantum yield of 3.5%, and is photoconductive. This study highlights a vast structural diversity that exists in the compositional space typically used in perovskite photovoltaics.

13.
Angew Chem Int Ed Engl ; 57(44): 14533-14537, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949230

RESUMO

The structure of paramagnetic surface species is notoriously difficult to determine. For TiIII centers related to Ziegler-Natta catalysis, we demonstrate here that detailed structural information can be obtained by advanced EPR spectroscopy and DFT computations, benchmarked on molecular analogs. The hyperfine sublevel correlation (HYSCORE) spectra obtained after reaction with 13 C-labeled ethylene provides information about the coupling with a proton in the first coordination sphere of TiIII as well as significant 13 C hyperfine coupling and thereby allows structural assignment of the surface species.

14.
Angew Chem Int Ed Engl ; 57(35): 11329-11333, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29999575

RESUMO

The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero-dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite-derived zero-dimensional SnII material Cs4 SnBr6 is presented that exhibits room-temperature broad-band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4-x Ax Sn(Br1-y Iy )6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self-trapped exciton emission bands.

15.
Inorg Chem ; 56(19): 11552-11564, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28895725

RESUMO

Interest in hybrid organic-inorganic lead halide compounds with perovskite-like two-dimensional crystal structures is growing due to the unique electronic and optoelectronic properties of these compounds. Herein, we demonstrate the synthesis, thermal and optical properties, and calculations of the electronic band structures for one- and two-layer compounds comprising both cesium and guanidinium cations: Cs[C(NH2)3]PbI4 (I), Cs[C(NH2)3]PbBr4 (II), and Cs2[C(NH2)3]Pb2Br7 (III). Compounds I and II exhibit intense photoluminescence at low temperatures, whereas compound III is emissive at room temperature. All of the obtained substances are stable in air and do not thermally decompose until 300 °C. Since Cs+ and C(NH2)3+ are increasingly utilized in precursor solutions for depositing polycrystalline lead halide perovskite thin films for photovoltaics, exploring possible compounds within this compositional space is of high practical relevance to understanding the photophysics and atomistic chemical nature of such films.

16.
Chemistry ; 22(45): 16172-16177, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723155

RESUMO

Enantiopure alleno-acetylenic ligands, containing two chiral allene moieties, assemble diastereoselectively with zinc(II) ions to form trinuclear triple-stranded helicates, featuring two internal cavity binding sites ("helicages"). The addition of cycloalkanes or heteroalicycles results in inclusion complex formation with two guest molecules bound in one helicate. While no positive allosteric effects were observed, the chiroptical responses increased strongly upon complexation, with guest-induced circular dichroism (ICD) signals reaching up to ΔΔϵ=205 m-1 cm-1 . The highest binding affinity was observed for six-membered 1,4-dichalcogens, with binding constants (K1 ) of up to 2400 m-1 for 1,4-oxathiane in CD3 OD. The X-ray co-crystal structure of 1,4-dioxane bound to a dinuclear triple-stranded helicate confirmed the previously predicted guest orientation inside the helicage, with the two oxygen atoms facing towards the electropositive zinc(II) metal centers.

17.
J Org Chem ; 81(6): 2572-80, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26919259

RESUMO

The novel hydrocarbon propeller-shaped D3h-symmetric cyclophane (3), "anthraphane", was prepared through a revisited and optimized gram-scale synthesis of the key building block anthracene-1,8-ditriflate 7. Anthraphane has a high tendency to crystallize and single crystals in size ranges of 100-200 µm are easily obtained from different solvents. The crystallization behavior of 3 was extensively studied to unravel packing motifs and determine whether the packing can be steered into a desired direction, so to allow topochemical photopolymerization. SC-XRD shows that anthraphane packs in layers irrespective of the solvent used for crystallization. However, within the layers, intermolecular arrangements and π-π interactions of the anthracene units vary strongly. Four interaction motifs for the anthracene moieties are observed and discussed in detail: two types of exclusively edge-to-face (etf), a mixture of edge-to-face and face-to-face (ftf), and no anthracene-anthracene interaction at all. To elucidate why an exclusive ftf stacking was not observed, electrostatic potential surface (EPS) calculations with the semiempirical PM3 method were performed. They show qualitatively that the anthracene faces bear a strong negative surface potential, which may be the cause for this cyclophane to avoid ftf interactions. This combined crystallographic and computational study provides valuable insights on how to create all-ftf packings.

18.
Angew Chem Int Ed Engl ; 55(39): 11999-2002, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27557780

RESUMO

We report the synthesis of a series of ruthenium complexes supported by the phosphine olefin ligand tropPPh2 (trop=5-H-dibenzo-[a,d]cyclohepten-5-yl) in the oxidation states 0, +I, and +II, formed via successive one-electron oxidization steps from Ru(0) (tropPPh2 )2 . The bidentate character of the tropPPh2 ligand and its steric hindrance force the complexes to adopt uncommon geometries, which were investigated by X-ray diffraction analysis. EPR data of the mononuclear Ru(I) complex reveal couplings of the unpaired spin with the ruthenium and two phosphorus nuclei, as well as the olefinic protons which show that the spin is mainly localized on the Ru(I) center.

19.
J Am Chem Soc ; 136(35): 12422-30, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25133552

RESUMO

We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.

20.
Nat Commun ; 15(1): 4577, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830854

RESUMO

Rare-earth elements (REEs) are critical to our modern economy, yet their mining from natural ores bears a profound environmental impact. Traditional separation techniques are chemical and energy-intensive because their chemical similarities make REEs very challenging to purify, requiring multiple extraction steps to achieve high purity products. This emphasizes the need for sustainable and straightforward separation methods. Here we introduce a strategy for the direct separation of europium (Eu) from complex mixtures under ambient conditions, leveraging on the redox non innocence of purely inorganic tungsten tetrathiolate (WS42-) ligands. The recovery of Eu is achieved upon reduction of Eu(III) to a Eu(II) coordination polymer, driven by an induced internal electron transfer from the tetrathiotungstate ligand. Applying this strategy to unconventional feedstock such as spent energy-saving lamps allows selective europium recovery with separation factors over 1000 and recovery efficiency as high as 99% without pre-treatment of the waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA