Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 200(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29203472

RESUMO

In Escherichia coli, the catabolism of C4-dicarboxylates is regulated by the DcuS-DcuR two-component system. The functional state of the sensor kinase DcuS is controlled by C4-dicarboxylates (like fumarate) and complexation with the C4-dicarboxylate transporters DctA and DcuB, respectively. Free DcuS (DcuSF) is known to be constantly active even in the absence of fumarate, whereas the DcuB-DcuS and DctA-DcuS complexes require fumarate for activation. To elucidate the impact of the transporters on the functional state of DcuS and the concentrations of DcuSF and DcuB-DcuS (or DctA-DcuS), the absolute levels of DcuS, DcuB, and DctA were determined in aerobically or anaerobically grown cells by mass spectrometry. DcuS was present at a constant very low level (10 to 20 molecules DcuS/cell), whereas the levels of DcuB and DctA were higher (minimum, 200 molecules/cell) and further increased with fumarate (12.7- and 2.7-fold, respectively). Relating DcuS and DcuB contents with the functional state of DcuS allowed an estimation of the proportions of DcuS in the free (DcuSF) and the complexed (DcuB-DcuS) states. Unexpectedly, DcuSF levels were always low (<2% of total DcuS), ruling out earlier models that show DcuSF as the major species under noninducing conditions. In the absence of fumarate, when DcuSF is responsible for basal dcuB expression, up to 8% of the maximal DcuB levels are formed. These suffice for DcuB-DcuS complex formation and basal transport activity. In the presence of fumarate (>100 µM), the DcuB-DcuS complex drives the majority of dcuB expression and is thus responsible for induction.IMPORTANCE Two-component systems (TCS) are major devices for sensing by bacteria and adaptation to environmental cues. Membrane-bound sensor kinases of TCS often use accessory proteins of unknown function. The DcuS-DcuR TCS responds to C4-dicarboxylates and requires formation of the complex of DcuS with C4-dicarboxylate transporters DctA or DcuB. Free DcuS (DcuSF) is constitutively active in autophosphorylation and was supposed to have a major role under specific conditions. Here, absolute concentrations of DcuS, DcuB, and DctA were determined under activating and nonactivating conditions by mass spectrometry. The relationship of their absolute contents to the functional state of DcuS revealed their contribution to the control of DcuS-DcuR in vivo, which was not accessible by other approaches, leading to a revision of previous models.


Assuntos
Proteínas de Ligação a DNA/efeitos dos fármacos , Transportadores de Ácidos Dicarboxílicos/análise , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/análise , Fatores de Transcrição/efeitos dos fármacos , Aerobiose , Anaerobiose , Transportadores de Ácidos Dicarboxílicos/efeitos dos fármacos , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fumaratos/metabolismo , Fumaratos/farmacologia , Espectrometria de Massas/métodos , Fosforilação , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Environ Microbiol ; 18(12): 4920-4930, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27318186

RESUMO

The sensor kinase DcuS of Escherichia coli co-operates under aerobic conditions with the C4 -dicarboxylate transporter DctA to form the DctA/DcuS sensor complex. Under anaerobic conditions C4 -dicarboxylate transport in fumarate respiration is catalyzed by C4 -dicarboxylate/fumarate antiporter DcuB. (i) DcuB interacted with DcuS as demonstrated by a bacterial two-hybrid system (BACTH) and by co-chromatography of the solubilized membrane-proteins (mHPINE assay). (ii) In the DcuB/DcuS complex only DcuS served as the sensor since mutations in the substrate site of DcuS changed substrate specificity of sensing, and substrates maleate or 3-nitropropionate induced DcuS response without affecting the fumarate site of DcuB. (iii) The half-maximal concentration for induction of DcuS by fumarate (1 to 2 mM) and the corresponding Km for transport (50 µM) differ by a factor of 20 to 40. Therefore, the fumarate sites are different in transport and sensing. (iv) Increasing levels of DcuB converted DcuS from the permanent ON (DcuB deficient) state to the fumarate responsive form. Overall, the data show that DcuS and DcuB form a DcuB/DcuS complex representing the C4 -dicarboxylate responsive form, and that the sensory site of the complex is located in DcuS whereas DcuB is required for converting DcuS to the sensory competent state.


Assuntos
Antiporters/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/metabolismo , Antiporters/genética , Transporte Biológico/fisiologia , Transportadores de Ácidos Dicarboxílicos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fumaratos/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Maleatos/metabolismo , Nitrocompostos/metabolismo , Propionatos/metabolismo , Proteínas Quinases/genética
3.
Mol Microbiol ; 94(1): 218-29, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135747

RESUMO

The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates. Consequently transport activity of DctA is not required for its function in the sensor complex. (ii) Effectors like fumarate induced expression of DctA/DcuS-dependent reporter genes (dcuB-lacZ) and served as substrates of DctA, whereas citrate served only as an inducer of dcuB-lacZ without affecting DctA function. (iii) Induction of dcuB-lacZ by fumarate required 33-fold higher concentrations than for transport by DctA (Km = 30 µM), demonstrating the existence of different fumarate sites for both processes. (iv) In titration experiments with increasing dctA expression levels, the effect of DctA on the C4-dicarboxylate sensitivity of DcuS was concentration dependent. The data uniformly show that C4-dicarboxylate sensing by DctA/DcuS resides in DcuS, and that DctA serves as an activity switch. Shifting of DcuS from the constitutive ON to the C4-dicarboxylate responsive state, required presence of DctA but not transport by DctA.


Assuntos
Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Ácidos Dicarboxílicos/química , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fumaratos/química , Fumaratos/metabolismo , Cinética , Proteínas Quinases/química , Proteínas Quinases/genética
4.
J Proteomics ; 212: 103583, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31734389

RESUMO

In the absence of sugars, C4-dicarboxylates (C4DC) like fumarate represent important substrates for growth of Escherichia coli. Aerobically, C4DCs are oxidized to CO2 whereas anaerobically, C4DCs are used for fumarate respiration. In order to determine the impact of fumarate under aerobic and anaerobic conditions, proteomes of E. coli W3110 grown aerobically or anaerobically with fumarate and/or the non-C4DC substrate glycerol were comparatively profiled by nanoLC-MS/MS. Membrane enrichment allowed sensitive detection of membrane proteins. A total of 1657 proteins of which 646 and 374 were assigned to the cytosol or membrane, respectively, were covered. Presence of fumarate triggered changes (≥ 2fold) to the levels of 211 and 76 proteins under aerobic and anaerobic growth, respectively. The fumarate induced changes included proteins encoded by genes regulated by the C4DC two-component system DcuS-DcuR (DctA, DcuB, FumB, FrdABC proteins) catalyzing uptake and initial catabolic steps. Many of the proteins displaying altered levels are not part of the DcuS-DcuR regulon, including proteins of citric acid cycle and associated pathways (aerobic), proteins involved in motility and chemotaxis (anaerobic), and oxidative stress. Their genes are mostly preceded by cAMP receptor protein (CRP) sites, some by DcuR-like sites. Testing of selected genes confirmed regulation by CRP and DcuS-DcuR. SIGNIFICANCE: Global protein profiling of the soluble and the membrane fraction provides a comprehensive view on the protein pattern of E. coli grown aerobically and anaerobically with or without fumarate. The results disclose during aerobic growth besides the known impact of the C4-dicarboxylates (C4DC) on carbon utilization and citric acid cycle major adaptations in amino acid metabolism. In contrast, protein alterations in the presence of fumarate under anaerobic conditions point to enhanced motility and chemotaxis. Only proteins (transporters, initial metabolic steps) feeding external C4DCs to the central pathways were regulated by the C4DC two-component system DcuS-DcuR, whereas other protein levels were controlled in an indirect manner by CRP triggered catabolite control and other mechanisms. Consequently, metabolic and transcriptional regulation by C4DCs is apparently effected by a network of the DcuS-DcuR system with important contribution by catabolite control.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fumaratos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteômica/métodos , Aerobiose , Anaerobiose , Proteínas de Ligação a DNA/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fumaratos/metabolismo , Proteínas Quinases/metabolismo , Espectrometria de Massas em Tandem/métodos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA